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We study a zero-temperature phase transition in the random field Ising model on scale-free networks with the
degree exponent �. Using an analytic mean-field theory, we find that the spins are always in the ordered phase
for ��3. On the other hand, the spins undergo a phase transition from an ordered phase to a disordered phase
as the dispersion of the random fields increases for ��3. The phase transition may be either continuous or
discontinuous depending on the shape of the random field distribution. We derive the condition for the nature
of the phase transition. Numerical simulations are performed to confirm the results.
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I. INTRODUCTION

Recently physicists have recognized that the underlying
graphs or networks for interacting systems have an intriguing
structure. Such complex networks are distinct from the peri-
odic lattices in Euclidean space in many aspects. The struc-
tural property of the complex networks has been studied in-
tensively �1–3�. Besides the network topology itself,
traditional topics of statistical physics of complex networks
have been investigated as well �4–14�. Statistical physical
systems of networks are attractive since they display theo-
retically interesting critical phenomena �10–12�. They are
also attractive for a possible application to various phenom-
ena in social systems having a complex underlying network
structure �9,13,14�.

In contrast to the periodic lattices in Euclidean space,
complex networks have an inhomogeneous structure. Recent
studies reveal that the structural inhomogeneity plays an im-
portant role in critical phenomena on complex networks
�9–12,15,16�. However, in the study of the critical phenom-
ena, systems with quenched disorder have received little at-
tention with only a few exceptions �17,18�. In this work we
investigate the effect of quenched disorder and structural in-
homogeneity on the nature of a phase transition. For this
purpose, we study a disorder-driven phase transition in the
random field Ising model �RFIM� on scale-free �SF� net-
works. A SF network is characterized by the power-law de-
gree distribution Pd�k��k−� with the degree exponent �. The
power-law distribution indicates that SF networks have an
inhomogeneous structure and the degree exponent � deter-
mines the strength of the inhomogeneity in structure.

The RFIM has attracted much attention in statistical phys-
ics �19–27�. Being compared with the spin glass model
where the quenched disorder is present in the interaction
among spins �28�, the RFIM has a quenched random external
magnetic field applied to each site. The quenched disorder
leads to a phase transition from an ordered ferromagnetic

phase to a disordered paramagnetic phase. In spite of the
simpler structure of the RFIM than the spin glass model,
there are still remaining questions and controversies, espe-
cially over the nature of the phase transition �19–24�.

We study the zero-temperature phase transition in the
RFIM using an analytic mean-field theory. Our analysis
shows that the shape of the random field distribution and the
degree exponent � determine the nature of the disorder-
driven phase transition. We also perform numerical simula-
tions, which confirm the analytic results. This paper is orga-
nized as follows: In Sec. II, an analytic approach based on
mean-field theory and its prediction of the phase transition
nature are provided. Numerical simulations follow in Sec.
III, and Sec. IV summarize our work.

II. ANALYTIC MEAN-FIELD THEORY

The Hamiltonian of the RFIM on a network is given by

H = − J�
i�j

aijsisj − �
i

hisi, �1�

where si= ±1 is the Ising spin variable of node i
=1,2 , . . . ,N, J�0 is the ferromagnetic coupling strength be-
tween neighboring spins, and aij is the adjacency matrix el-
ement of the network. The matrix element aij takes the value
of 1 �0� if two nodes i and j are �not� connected via a link.
The degree of a node i is given by ki=� jaij. We will set J
=1 hereafter for notational simplicity. Here the external mag-
netic field hi is a quenched random variable, which is distrib-
uted identically and independently according to a distribution
function p�h�. We only consider a symmetric distribution—
that is, p�h�= p�−h�. It is convenient to write

p�h� =
1

�
p0� h

�
� , �2�

where p0�x� is a normalized �	p0�x�dx=1� function deter-
mining the shape of the distribution and � is a measure of
the disorder strength.

The ferromagnetic coupling J favors the ordered state
with all spins up or down. The external magnetic field, how-
ever, tends to pin each spin to a random direction. The com-
petition between them may lead to a phase transition, which
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will be investigated at zero temperature using mean-field
theory. In the framework of the mean-field theory, each spin
si is assumed to be in equilibrium under the effective mag-

netic field h̃i
� jaijmj +hi where mj 
�sj� is the average lo-
cal magnetization at node j. Hence, the average local mag-
netization should satisfy the coupled mean-field equation

mi = �si� = tanh���
j

aijmj + �hi� , �3�

where �=1/ �kBT� with the Boltzmann constant kB and tem-
perature T.

Instead of solving Eq. �3� directly, we make a simplifica-
tion by assuming that the local magnetization depends only
on the degree and the magnetic field—that is, mi=m�ki ,hi�. It
could be valid when the network has no internal structure
and all nodes with the same degree and the same random
field are statistically equivalent �16�. Then m�k ,h� should
satisfy

m�k,h� = tanh��
k�
� dh� p�h��m�k�,h��kPd�k��k� + �h� ,

�4�

where Pd�k� �k� is the conditional probability that a neighbor-
hood of a node with the degree k has the degree k�. The
conditional probability Pd�k� �k� measures a correlation be-
tween degrees of adjacent nodes. Although many real-world
networks display a nontrivial degree correlation �29�, we fo-
cus our attention on uncorrelated networks in this work for
analytic tractability. It will be interesting to study the effect
of the degree correlation on critical phenomena, which we
leave for future work. Without the correlation, the condi-
tional probability is given by

Pd�k��k� = k�Pd�k��/k̄ , �5�

with the mean degree k̄ �16�.
Now we define the order parameter

m = �
k

kPd�k�

k̄
� dhp�h�m�k,h� �6�

as the weighted average of the local magnetization. Using
Eqs. �4� and �5�, one finds that the order parameter should
satisfy

m =� dk
kPd�k�

k̄
� dhp�h�tanh��mk + �h� �7�

in the continuum limit. We are interested in the zero-
temperature limit where �→ +�. Using p�h�= p�−h� and
p�h�= p0�h /�� /�, we finally obtain the self-consistency �SC�
equation for the order parameter at zero temperature given
by

m = f�m� 
 � dk
kPd�k�

k̄
G�km/�� , �8�

where

G�x� 
 2�
0

x

dx�p0�x�� . �9�

The SC equation depends on the network inhomogeneity
through Pd�k�, the shape of the random field distribution
through G�x�, and the disorder strength �. SF networks have
the power-law degree distribution. We use the following ex-
plicit form for the degree distribution for further analysis:

Pd�k� = ck−� �10�

for k�k0. Here k0 is a cutoff and c= ��−1�k0
�−1 is a normal-

ization constant. The lth moment of the degree, if it exists,
will be denoted as kl. As for the magnetic field distribution,
we assume that p0�x� in Eq. �2� is analytic at x=0 �30�. Then,
the function G�x� in Eq. �9� can be expanded as

G�x� = �
n=0

�

b2n+1x2n+1, �11�

where b1=2p0�0�, b3= p0��0� /3, and so on. It has the limiting
behavior that G�x→0�=0 and G�x→��=1.

The phase transition nature is determined by the leading
behavior of f�m� near m=0 �see Fig. 1�. For a bounded de-
gree distribution—e.g., the Poisson distribution—one can in-
sert Eq. �11� into Eq. �8� and expand f�m� into a series of m
with odd-integer powers. However, with the power-law de-
gree distribution, the function f�m� has a singular expansion.
In that case, one needs to split the function G�x� into two
parts as G�x�=Gr�x�+Gs�x� where Gr�x�=�n�ñb2n+1x2n+1

and Gs�x�=G�x�−Gr�x�. Here ñ is the largest integer among
all satisfying 2n+1��−2. We will show that Gr �Gs� con-
tributes to f�m� a regular �singular� part consisting of integer
�noninteger� powers of m. Since the leading behavior of f�m�
depends on the value of ñ, we consider the following three
cases separately.

A. ��5 case

In this case, ñ�1 and f�m� can be expanded as

m

(a)

m

(b)

m

(c)

FIG. 1. Schematic plots of f�m� �solid line�, which has the infi-
nite slope at m=0 �a�, is convex at m=0 �b� and is concave at m
=0 �c�. The dashed line represents the graph of m, and the solid
circle represents the solution for the SC equation m= f�m�.
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f�m� = �
n=0

ñ

C2n+1�m

�
�2n+1

+ c�m

�
��−2�

mk0/�

�

dx x1−�Gs�x� ,

�12�

where C2n+1=b2n+1k2n+2 / k̄. Note that Gs�x�=O�x2ñ+1� as x
→0 and Gs�x�=O�x2ñ−1� as x→�. This property guarantees
that the integral in the second term converges to a finite
value. Hence we find that

f�m� =
2p0�0�k2

k̄
�m

�
� +

p0��0�k4

3k̄
�m

�
�3

+ O�m	� , �13�

with 	=min��−2,5�.
The function f�m� has a finite slope at m=0 and changes

its convexity depending on the shape of the random field
distribution given by p0�x�. This property leads to the follow-
ing conclusion: For p0��0��0, f�m� is convex as shown in
Fig. 1�b�. Then, the order parameter m jumps from a nonzero
value to zero at a threshold value of �. That is to say, the
system undergoes a first-order phase transition. For p0��0�
�0, f�m� is concave as shown in Fig. 1�c�. Therefore, the
system undergoes a continuous phase transition at �c

=2p0�0�k2 / k̄ and the order parameter scales as

m � ��c − ���, �14�

with the order parameter exponent

� = 1/2. �15�

These results coincide with those for the mean-field model
where all spins interact with all others �19,20,26�.

B. 3���5 case

In this range of �, ñ=1 and Gr�x�=b1x. So the function
f�m� is given by

f�m� =
b1k2

k̄
�m

�
� + c�m

�
��−2�

mk0/�

�

dx x1−�Gs�x� .

Note that Gs�x�=O�x3� as x→0 and Gs�x�=O�x� as x→�
since Gs�x�=G�x�−b1x. This property guarantees that the in-
tegral converges to a finite value. So we find that

f�m� =
2p0�0�k2

k̄
�m

�
� + cD�m

�
��−2

+ O�m3� , �16�

where the constant D is given by

D =� dx x1−��G�x� − 2p0�0�x� . �17�

The function f�m� has a finite slope at m=0 and changes
its convexity depending on the sign of the constant D. This
leads to the following conclusion: For positive D, the system
undergoes a first-order phase transition. For negative D, the
system undergoes a continuous phase transition at �c

=2p0�0�k2 / k̄ and the order parameter scales as in Eq. �14�
with the critical exponent

� =
1

� − 3
. �18�

We want to stress that the transition nature is determined
by the whole shape of the random field distribution given by
the function p0�x�. For ��5, it is determined by the sign of
p0��0� which is related to the local shape of p0�x� near x=0.
On the contrary, it is the sign of the constant D that deter-
mines the transition nature for 3���5. Hence, one may
have the continuous transition even with the magnetic field
distribution with p0��0��0 and vice versa.

One may have a negative D for a distribution p�h� which
has a peak at h=0 and decreases monotonically as �h� in-
creases. In such a case, the Ising spins become disordered
gradually as the disorder strength grows. On the other hand,
one may have a positive D for a distribution p�h� which has
a peak at nonzero values of h= ±h0 and a deep valley at h
=0. In such a case, the random field breaks the order
abruptly.

C. 2���3 case

In this range of �, ñ=0 and Gs�x�=G�x�. By changing the
integration variable k to x=mk /� in Eq. �8�, and using Eq.
�10�, we can write the integral as

f�m� = c�m

�
��−2�

mk0/�

�

dx x1−�G�x� . �19�

Note that G�x� vanishes �at most� linearly as x→0 and satu-
rates to 1 for x
1. These properties guarantee that the inte-
gral converges to a finite value in the limit m→0, which
yields that

f�m� = c��m/���−2 + O�m1� , �20�

with a constant c�=c	0
�dx x1−�G�x�. The function f�m� has

the infinite slope at m=0 and the SC equation m= f�m� has a
nonzero solution

m � �−��−2�/�3−�� �21�

at all values of � �see Fig. 1�a��. Therefore, the system is
“always magnetized” irrespective of the shape of the random
field distribution and the disorder strength. The SF network
with 2���3, where the second moment of degree diverges,
is famous for its peculiar behavior such as the absence of the
percolation and epidemic threshold �2,15,31,32�. This “ab-
sence of magnetization threshold” is another example of
such characteristic behavior.

In summary, we have a general criterion for the nature of
the zero-temperature phase transition of the RFIM with the
symmetric random field distribution p�h� on SF networks
with the degree distribution Pd�k��k−� without the degree
correlation. For 2���3, the system is always magnetized
and there is no phase transition. For ��3, the system dis-
plays a phase transition at a finite value of �. The transition
may be either the first-order or continuous phase transition.
The condition for the first-order transition is that D�0 �see
Eq. �17�� or p0��0��0 for 3���5 or ��5, respectively. In
the opposite case the transition is the continuous one and the
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critical exponent for the order parameter is given by Eq. �15�
or �18�, respectively. Finally we add a remark that a logarith-
mic correction appears when �=3 or 5.

III. NUMERICAL SIMULATION

We perform a numerical study of the RFIM with the
Hamiltonian in Eq. �1� at zero temperature to confirm the
analytic result. First we generate a SF network of N nodes

and K=2k̄N links with the degree exponent � using the so-
called static model �33�. The static model has no degree cor-
relation except for the region where 2���3 �34�. Never-
theless, the “always magnetized” characteristic of the system
from the mean-field analysis still holds for 2���3, as we
will see. Random magnetic fields are then assigned to each
node according to a distribution function p�h�= p0�h /�� /�.
The ground-state spin configuration �si� is found and the
weighted order parameter

m =
1

k̄N
��

i=1

N

kisi�
is calculated, where ki is the degree of node i. The order
parameter is averaged over different samples to yield �m�.
Note that each sample has a different realization of a network
configuration and a different realization of random fields.
The average over these samples corresponds to the order
parameter defined in Eq. �6�. The exact ground state of the
RFIM can be found numerically by adopting the mapping of
the RFIM onto the maximum flow problem �35�. For details
of the mapping and the numerical algorithm solving the
problem, we refer reader to Ref. �35�.

As for the random field distribution p�h�= p0�h /�� /�, we
use the two functions p0�x�= p+�x� and p0�x�= p−�x� which
are given by

p+�x� =
3

2
x2, �22�

p−�x� =
�

4
cos��x

2
� , �23�

in the interval −1�x�1 and zero outside the interval. These
functions have the following properties: p+��0��0 and D
�0 for p+�x�, and p−��0��0 and D�0 for p−�x�. So we can
test the analytic result with these two distribution functions.

A. Numerical result with p„h…=p+„h /�… /�

We present the numerical data for the sample averaged
magnetization �m� in Fig. 2. They were obtained from the
static model networks with �=2.5, 4.0, and 6.0 of sizes N
=1000, . . . ,64 000.

At �=2.5, the ferromagnetic order with nonzero m per-
sists at high values of �. Moreover, the log-log plot in Fig.
2�a� suggests that the magnetization decreases algebraically.
This behavior is consistent with the analytic result m
��−��−2�/�3−�� in Eq. �21�. According to it, the decay expo-
nent should be −1 at �=2.5. There is a little discrepancy in

the decay exponent. We attribute the apparent discrepancy to
a finite-size effect since the decay exponent approaches the
analytic result as N increases. However, we cannot exclude a
possibility that it could be due to the negative degree corre-
lation at �=2.5.

Figures 2�b� and 2�c� and show that the order parameter
vanishes abruptly at a certain threshold of �, which is a
characteristic of a first-order phase transition. In order to
prove the first-order nature we study the order parameter
histogram H�m� near the threshold. Numerically the histo-
gram is measured by the fraction of samples whose order
parameter value lies between m and m+m, which is equal
to H�m�m. In Fig. 3, we present the histogram H�m� ob-
tained numerically on the SF networks of N=64 000 nodes
with m=0.01. At small values of � the histogram is peaked
at a nonzero value of m, while it is peaked at m=0 at high
values of �. In the intermediate values of �, there appear
two peaks in the histogram, which indicates the phase coex-
istence. The two-peak structure near the threshold confirms
the first-order transition nature.

B. Numerical result with p„h…=p−„h /�… /�

We present the numerical data obtained with the random
field distribution p�h�= p−�h /�� /� in Fig. 4. At �=2.5 �Fig.

FIG. 2. �m� versus � with the magnetic field distribution p�h�
= p+�h /�� /� and �=2.5 �a�, 4.0 �b�, and 6.0 �c�. The dashed line in
�a� has a slope −1.

0 0.2 0.4 0.6 0.8 1
m

0 0.2 0.4 0.6 0.8 1
m

∆ = 13.0∆ = 13.6

13.8

13.9

14.0

14.2

14.4

13.1

13.2

13.3

13.4

13.5

FIG. 3. The histogram on an arbitrary scale of the magnetization
at several values of � near the transition on the SF networks of N
=64 000 nodes with �=4.0 �left column� and 6.0 �right column�.
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4�a��, the order parameter remains finite and decreases alge-
braically as �, which is consistent with Eq. �21�. At �=4.0
and 6.0 �Figs. 4�b� and 4�c��, the order parameter shows a
threshold behavior. Unlike the case with p�h�= p+�h /�� /�,
the order parameter approaches zero smoothly as � in-
creases. It indicates that the transition could be a continuous
transition.

In order to examine the transition nature, we measure the
Binder parameter �36�

U = 1 −
�m4�

3�m2�2 . �24�

The Binder parameter is supposed to take a nontrivial value
at a critical point with scale invariance. It takes a trivial value
2/3 and 0 in an ordered phase and in a disordered phase,
respectively, in the N→� limit. A critical point will manifest
itself as a crossing point in the plot of U versus � at different
system sizes N.

Figure 5 shows the Binder parameter for the three cases,
each of which corresponds to 2���3, 3���5, and �
�5. In Fig. 5�a�, there is no crossing point and the value
U=2/3, corresponding to the ordered state, persists as the
system size grows. This behavior clearly shows that the sys-
tem is always magnetized in the thermodynamic limit. Fig-
ures 5�b� and 5�c� show that there appear the crossing points
at �c�38.0 for �=4.0 and �c�31.5 for �=6 where the
Binder parameter is scale invariant and the system is critical.
It indicates that the transition is a continuous transition.

Since the phase transition is a continuous one, we expect
that the order parameter satisfies the critical finite-size-
scaling form �36�

�m� = N−�/��F„��c − ����N… , �25�

where � is the order parameter exponent and �� is the finite-
size-scaling exponent. The scaling function F�x� has the lim-

iting behavior that F�x→0��const and F�x→���x�/�� so
that

�m� � ��c − ��� �26�

for N
 ��c−��−�� and

�m� � N−�/�� �27�

for N� ��c−��−��.

The finite-size-scaling form is used to obtain the critical
exponents � and ��. In Fig. 6, we present the scaling plot for
the order parameter according to Eq. �25� with the exponent
values that give the best data collapse. We estimate that �
=0.75 and ��=3.47 for �=4.0 and �=0.45 and ��=2.81 for
�=6.0.

Repeating the same analysis, we obtained the values of �
at several values of ��3. The numerical results are com-
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pared with the analytic mean-field results �see Eqs. �18� and
�15�� in Fig. 7. For ��5, the critical exponent � is indeed
1/2 from the simulation result. One finds that the values of �
for 3���5 deviate slightly from the mean-field prediction.
Although we suspect that this may be due to the singular
dependence of �=1/ ��−3� near �=3, we cannot exclude a
possibility that it may be due to a limitation of our mean-
field approximation.

IV. DISCUSSION AND CONCLUSIONS

The main result of our work is that the RFIM on scale-
free networks is always magnetized for 2���3 and it has a
disorder-driven phase transition for ��3 whose nature de-
pends on the shape of the random field distribution p�h�
= p0�h /�� /�. As for the nature of the transition, similar re-

sults have been known in regular lattices in high-dimensional
Euclidean space �19,20,26�: the disorder-driven zero-
temperature phase transition is first order or continuous for a
convex �p��0��0� or concave �p��0��0� random field dis-
tribution, respectively. Our result shows that the same crite-
rion is valid for SF networks with ��5. For 3���5, the
criterion is replaced by positivity or negativity of the quan-
tity D defined in Eq. �17�. Roughly speaking, the distribu-
tions p�h� highly peaked at h=0 give rise to the continuous
transition, while distributions highly peaked at nonzero h
= ±h0 give rise to the first-order transition. One may have a
distribution with p0��0��0 but with D�0. For example,
p0�−1�x�1�=3�a+ �1−a�x2� / �2�1+2a�� with a=3/4 is
such a function. We checked numerically that it indeed leads
to the continuous phase transition at �=4.

In summary, we have investigated the RFIM on scale-free
networks with inhomogeneous connections. The network to-
pology, especially the degree exponent �, is shown to affect
the phase transition and the critical exponent. The shape of
the random field distribution is also responsible for the na-
ture of the phase transition.
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