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Robustness of the in-degree exponent for the World-Wide Web
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We consider a stochastic model for directed scale-free networks following power laws in the degree distri-
butions in both incoming and outgoing directions. In our model, the number of vertices grow geometrically
with time with a growth ratep. At each time step,~i! each newly introduced vertex is connected to a constant
number of already existing vertices with the probability linearly proportional to in-degree distribution of a
selected vertex, and~ii ! each existing vertex updates its outgoing edges through a stochastic multiplicative
process with mean growth rate of outgoing edgesg and its variances2. Using both analytic treatment and
numerical simulations, we show that while the out-degree exponentgout depends on the parameters, the
in-degree exponentg in has two distinct values,g in52 for p.g and 1 for p,g, independent of different
parameters values. The latter case has logarithmic correction to the power law. Since the vertex growth ratep
is larger than the degree growth rateg for the World-Wide Web~WWW! nowadays, the in-degree exponent
appears robust asg in52 for the WWW.

DOI: 10.1103/PhysRevE.66.046107 PACS number~s!: 89.75.Hc, 89.70.1c, 87.18.Sn, 89.75.Da
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I. INTRODUCTION

Complex system consists of many constituents such
individuals, substrates, and companies in social, biologi
and economic systems, respectively, showing coopera
phenomena between constituents through diverse inte
tions and adaptations to the pattern they create@1,2#. Re-
cently, there have been considerable efforts to unders
such complex systems in terms of random graph, consis
of vertices and edges, where vertices~edges! represent con-
stituents~their interactions!. This approach was initiated b
Erdös and Re´nyl ~ER! @3#. In the ER model, the number o
vertices is fixed, while edges connecting one vertex to
other occur randomly with certain probability. The ER mod
is, however, too random to describe complex systems in
world.

An interesting feature emerging in such complex syste
is the scale-free~SF! behavior in the degree distributio
P(k);k2g, where the degreek is the number of edges inci
dent upon a given vertex. Baraba´si and Albert ~BA! @4,5#
introduced an evolving model illustrating SF network. In t
BA model, the number of vertices increases linearly w
time, and a newly introduced vertex is connected tom al-
ready existing vertices, following the so-called preferen
attachment~PA! rule that the vertices with more edges a
preferentially selected for the connection to the new ver
with the probability linearly proportional to the degree
that vertex. Then it is known that the degree distributi
follows P(k);k23 for the BA model. While the BA mode
is meaningful as the first step to generate SF network,
too simple to be in accordance with real-world networ
Extended versions of the BA model have been introdu
@6,7#, taking into account additional local events such as a
ing new edges, or rewiring edges from one vertex to anot
Depending on the frequency of these processes, the de
distribution either remains as SF with the exponent depe
1063-651X/2002/66~4!/046107~6!/$20.00 66 0461
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ing on the details of the local event or follows an exponen
decay.

Huberman and Adamic~HA! @8# proposed another sce
nario for SF networks. In the HA model, the number of ve
tices grows geometrically with time, and edges of each v
tex evolve following a stochastic multiplicative proces
Combining these two ingredients leads to a power-law
havior in the degree distribution, where the exponent is
termined by the growth rates of vertices, and the mean
gree and the variance of the fluctuations arising in
stochastic process of updating edges. While the HA and
models look fundamentally different at a first glance, th
are similar in essence. One can show easily that the m
plicative process is reduced to the PA rule when the ti
dependence of the total number of edges is the same as
of the number of newly introduced vertices. Moreover, t
stochastic process in the HA model might be related to
rewiring process in the extended model of the BA model@6#.

SF networks may be classified into undirected or direc
network whether directionality is assigned to edges or n
Typical examples of undirected networks include the ac
network @9#, the author collaboration network@10#, and the
internet with equal uploading and downloading rates@11#.
Directed networks are also ubiquitous in real world such
the World-Wide Web~WWW! @8,12,13#, the citation network
of scientific papers@14#, biological networks such as meta
bolic networks@15# and neural networks,etc. Recently, Al-
bert et al. @12# and Hubermanet al. @8# investigated the to-
pology of the WWW extensively, and found that the i
degree and the out-degree distributions of the WWW exh
power-law behaviors with different exponents, i.e.,Pin(kin)
;kin

2g in and Pout(kout);kout
2gout , respectively. Here the in

degreekin ~out-degreekout) means the number of edges inc
dent upon~emanating from! a given vertex. Further studie
@13,16,17# showed thatg in is robust asg in'2.1 for different
systems, whilegout varies depending on systems, rangi
©2002 The American Physical Society07-1
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from 2.4 to;2.7 as tabulated in the Table I.
Theoretical studies for directed networks have less b

carried out compared with those for undirected networ
When the directionality is assigned to edge in the BA mod
pointing from a new vertex to old ones, the in-degree and
out-degree distributions followPin(kin);kin

23 and Pout(kout)
5d(kout2m), respectively, which is not relevant to the em
pirical results for the WWW. Dorogovtsev and Mendes@18#
performed a similar study using the rate equation, in wh
the in-degree distribution follows a power law whereas
out-degree distribution is of thed function. More recently,
Krapivskyet al. @19# studied directed SF networks using th
rate equation method for the simple case similar to the
introduced by Tadic´ @20# that at each time step, a vertex
newly introduced and connected to an old vertex followi
the PA rule with a certain probability and an internal direct
edge is connected between two vertices chosen following
PA rule with the remaining probability. They obtained th
in-degree and the out-degree distributions analytically, b
of which exhibit power-law behaviors with different expo
nents depending on the detail of the parameters they u
While their analytic treatment was successful in genera
the empirical values of the out-degree and the in-degree
ponents for the WWW by tuning the parameters, their mo
is unable to illustrate the robustness of the in-degree ex
nent for various systems because different parameters
different values ofg in andgout at the same time.

In this paper, we introduce a stochastic model for direc
SF networks exhibiting power-law behaviors with distin
exponents in both incoming and outgoing directions a
present an analytic solution for the model. Through t
study, we can illustrate why the in-degree exponent is rob
for different systems, while the out-degree exponent depe
on the details of systems. This behavior occurs when
growth rate of the number of vertices is large enough co
pared with the effective growth rate of degree of each ver

This paper is organized as follows. In Sec. II, we w
introduce a stochastic model. In Secs. III and IV, analy
solutions for the out-degree and the in-degree distributi
will be presented, respectively. In Sec. V, we will present
result of numerical simulations for the model in the vert
growth dominant and the degree growth dominant regim
respectively. The final section will be devoted to the conc
sions.

II. THE MODEL

Let us introduce a directed SF network model as follow
~i! At each time step, the total number of vertices increa

TABLE I. Numerical values of in-degree and out-degree exp
nents for various systems.

Refs. System In-degree exponent Out-degree expon

Ref. @12# nd. edu 2.1 2.45
Ref. @13# 2.1 2.38
Ref. @17# off-site 2.1 2.67
Ref. @17# total 2.1 2.72
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geometrically with growth ratep, i.e.,

N~ t !5N~ t21!~11p!. ~1!

So the total number of vertices newly introduced at timet is
pN(t21). ~ii ! m edges emanate from each new verte
pointing tom distinct old vertices following the PA rule. The
probability to connect to a vertexj is given by

P i→ j5
kin, j~ t21!

(
r 51

N(t21)

kin,r~ t21!

, ~2!

wherekin, j (t21) means the in-degree number of edges
the vertexj at time t21. We assume in the model that ea
new vertex is given an incoming edge pointed from itse
otherwise the in-degree number never grows with time.~iii !
each vertex updates its outgoing edges by either adding
edges or deleting existing edges through a multiplicative s
chastic process. Letkout,i(t) denotes the out-degree numb
of edges of the vertexi at time t. Thenkout,i(t) evolves as

kout,i~ t11!5kout,i~ t !@11z i~ t11!#, ~3!

wherez i(t) means the growth rate of the out-degree num
kout,i(t) at time t, which fluctuates from time to time abou
meangi ,

z i~ t !5gi1j i~ t !, ~4!

where j i(t) is assumed to be a white noise satisfyi
^j i(t)&50 and ^j i(t)j j (t8)&5s i

2d t,t8d i , j , where s i
2 is the

variance. The growth rategi and the standard deviations i
could vary in general for different vertices. HA, howeve
assumed that$z i% are uniform for different vertices, i.e.,gi
5g and s i5s for all i. Whenz i(t11).0, the out-degree
number at vertexi is increased. Then we addkout,i(t)z i(t
11) new edges to the vertexi, pointing to other distinct
vertices which are not connected, following the PA ru
given by Eq. ~2!. When z i(t11),0, we delete
kout,i(t)uz i(t11)u outgoing edges from the vertexi ran-
domly.

III. THE OUT-DEGREE DISTRIBUTION

The out-degree distributionPout(kout) can be obtained by
following the argument given by HA. The conditional prob
ability Pout(kout,t u m) thatkout,i5kout at timet5t i1t for a
vertex i born att5t i , with kout,i5m is given by

Pout~kout,tum!5
1

koutA2ps0
2t

expH 2
@ ln~kout/m!2g0t#2

2s0
2t J .

~5!

The above distribution was obtained by applying the cen
limit theorem for the variable ln„kout(t)/kout(t21)…, so that
g0 and s0

2 in Eq. ~5! are related tog and s2 as g0'g
2s2/2, ands0

2's2 respectively@21#. Since the density of
vertices with aget is proportional tor(t);exp(2pt), the
out-degree distribution collected over all ages becomes

-

t

7-2
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Pout~kout!5E dtr~t!Pout~kout,tum!;kout
2gout, ~6!

where

gout512
g0

s0
2

1
Ag0

212ps0
2

s0
2

. ~7!

We note that the out-degree exponentgout depends on the
three parameters,p, g0, ands0.

IV. THE IN-DEGREE DISTRIBUTION

The in-degree number of edges at a vertexi is increased
as new edges are additionally pointed from other vertice
i, or decreased as already connected edges are deleted
other vertices. For the increased case, there are two type
occasions. The first is the case in which some of edges f
newly born vertices are connected to the vertexi. Since the
total number of edges generated from new vertices at timt
is given by

Lnew~ t !5mpN~ t21!, ~8!

the in-degree number of edges of the vertexi evolves as

]kin,i~ t !

]t
5

kin,i~ t21!

(
r 51

N(t21)

kin,r~ t21!

Lnew~ t !. ~9!

Second is the case in which the vertexi receives edges from
existing vertices as they update their outgoing edges.
total number of newly added outgoing edges is given by

Ladd~ t !5 (
j 51

N(t21)

kout,j~ t21!z j
1~ t !, ~10!

wherez j
1(t) denotes the one whenz j (t).0. Then, the in-

degree number of edges of the vertexi evolves as

]kin,i~ t !

]t
5

kin,i~ t21!

(
r 51

N(t21)

kin,r~ t21!

Ladd~ t !. ~11!

On the other hand, the decreased case occurs when
vertices remove their connections to the vertexi. This case
occurs whenz j (t),0 for a vertexj Þ i , with z j (t) denoted
by z j

2(t). The total number of edges removed through t
updating process is

Ldel~ t !5 (
j 51

N(t21)

kout,j~ t21!uz j
2~ t !u. ~12!

Although the edges deleted are chosen randomly, the ve
with a higher in-degree number of edges has more incom
edges deleted because incoming edges were formed fol
ing the PA rule. Thus the deletion process leads to
04610
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]kin,i~ t !

]t
5

kin,i~ t21!

(
r 51

N(t21)

kin,r~ t21!

Ldel~ t !. ~13!

Altogether the dynamic equation for the in-degree numbe
edges of the vertexi is written as

]kin,i~ t !

]t
5

kin,i~ t21!

(
r 51

N(t21)

kin,r~ t21!

@Lnew~ t !1Ladd~ t !2Ldel~ t !#.

~14!

The above equation can be rewritten as

]kin,i~ t !

]t
5kin,i~ t21!S mpN~0!ept

L~ t !
1g01

x~ t !

L~ t ! D , ~15!

whereL(t) denotes the total number of incoming edges
time t,

L~ t !5(
i

N(t)

kin,i~ t !, ~16!

which behaves asymptotically as

L~ t !'H A1ept if p.g0 ,

A2tept if p5g0 ,

A3eg0t if p,g0 ,

~17!

whereA1 , A2, andA3 are given as

A15
mpN~0!

~p2g0!
, ~18!

A25mpN~0!, ~19!

and

A35
mpN~0!

~g02p!
. ~20!

x(t) in Eq. ~15! is defined as

x~ t !5 (
i

N(t21)

kout,i~ t21!~j i
12uj i

2u!, ~21!

wherej i
1(t) @j i

2(t)# denotes the noise forj i(t).0 @j i(t)
,0#. Then using the stochastic property^j i&50, we obtain
that

^x~ t !&50, ~22!

and

^x~ t !x~ t8!&'H B1eptd t,t8 if p.2~g01s0
2/2!,

B2teptd t,t8 if p52~g01s0
2/2!,

B3e2(g01s0
2/2)td t,t8

if p,2~g01s0
2/2!,

~23!
7-3
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whereB1 , B2, andB3 are given by

B15
m2s0

2pN0

2~p2s0
222g0!

, ~24!

B25m2s0
2pN0~11p!2, ~25!

and

B35
m2s0

2pN0

2~s0
212g02p!

. ~26!

Thusx(t) plays a role of noise, and its variance depends
time.

The asymptotic behavior of the dynamic equation E
~15! depends on relative magnitudes amongp, g0, ands0

2.
We consider every possible case below.

~i! When p>g01s0
2/2 ~i.e., p>g), the stochastic term

the last term in Eq.~15!, is negligible in long time limit.
Moreover, sinceN(t) and L(t) have the same time depen
dence, Eq.~15! is simply reduced to

]kin,i~ t !

]t
5pkin,i~ t !. ~27!

Thus the in-degree number of edges of a vertexi born at time
t5t i becomes

kin,i~ t !5ep(t2t i ). ~28!

Then the in-degree distribution becomes

Pin~kin!5
]

]kin,i
@12P~kin.kin,i !#ukin,i5kin

~29!

5
]

]kin,i
S 2p

m

kin,i
D ukin,i5kin

}kin
2g in, ~30!

with g in52.
~ii ! When g0<p,g01s0

2/2 ~i.e., g2s2/2<p,g), the
dynamic equation is reduced to asymptotically

]kin,i~ t !

]t
5kin,i~ t !S p1

x~ t !

L~ t ! D . ~31!

Since ^x(t)&50, one may regard the above equation a
stochastic log-normal dynamic equation with the varianc

^x~ t !x~ t8!&

L~ t !2
5D 1

2e2std t,t8 , ~32!

with D 1
25B3 /A1

2 ands5g01s0
2/22p. Sinces.0, the fluc-

tuation term cannot be ignored. Invoking the central lim
theorem, the conditional probabilityPin(kin ,tukin,0), that
kin,i5kin at time t5t i1t, given kin,i5kin,051 at t5t i be-
comes
04610
n
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a

t

Pin~kin ,tukin,0!5
1

kinA2pD 1
2~e2st21!/2s

3expH 2
@ ln~kin /kin,0!2pt#2

2D 1
2~e2st21!/2s J . ~33!

So the in-degree distribution can be obtained through

Pin~kin!5E
0

t

r~t!Pin~kin ,tukin,0!dt. ~34!

When 2st@1, it can be shown using the saddle point a
proximation that the in-degree distribution is of the form,

Pin~kin!;
1

kin~ lnkin!(p/s11) , ~35!

which is valid as long as lnkin!e2st. When p5g0 , D 1
2 is

replaced byB3 /A2
2.

~iii ! For p,g0 ~i.e., p,g2s2/2), the dynamic equation
of kin,i(t) can be written as

]kin,i~ t !

]t
5kin,i~ t !S g01

x~ t !

L~ t ! D . ~36!

The variance can be written as

^x~ t !x~ t8!&

L~ t !2
5D 2

2es0
2td t,t8 , ~37!

with D 2
2[B3 /A3

2. Following the same step as used in t
second case, we obtain that

Pin~kin!;
1

kin~ ln kin!(2g0 /s0
2
11)

. ~38!

In short, when the growth rate of vertexp is larger than
the effective growth rate of edge,g01s0

2/2, the in-degree
distribution is independent of the detail of evolving ne
works, so that the in-degree exponent is robust for differ
systems, while the out-degree exponent depends on the
tail. This is the case we observe in the real WWW beca
the number of webpages increases rapidly nowada
whereas average number of hyperlinks does rather a
slower rate due to limited space on webpage. When the n
ber of webpages is saturated in the future, the growth rap
will become moderated with the number of hyperlinksg0
much dominant. Then the in-degree distribution exhibits
phase transition to the form Eq.~35! or ~38!, implying that
the hyperlink is much centralized to a few famous webpag
The phase diagram is depicted in Fig. 1.

V. NUMERICAL SIMULATIONS

It was reported@17# that the Web consisted ofN5203
3106 documents from the viewpoint of Altavista, and th
7-4
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average in-degree and out-degree number of edges ark̄in

5 k̄out57.22 as of May of 1999, andN'2713106 and k̄in

5 k̄out57.85 as of October of 1999. Based on this data,
estimate very roughly the vertex and the mean degree gro

FIG. 1. Schematic phase diagram of various behaviors of
in-degree distribution in the parameter space (p,g0).

FIG. 2. Plot of the in-degree and out-degree distributions dra
in the cumulated way,Pcum(k)5*k

`P(k)dk for the cases,p
50.059, g50.017, ands250.051 for ~a!, ands250.021 for ~b!.
Both cases belong to the region~I!. Insets: The in-degree distribu
tions for different system sizes,N5319 383 and 1 679 603 in~a!,
andN5430 671 and 1 375 434 in~b!.
04610
e
th

rates to bep'0.059 andg'0.017 per month, respectively
However, the fluctuation strengths is not known. Using the
estimated values ofp and g, we perform numerical simula
tions for the stochastic model following the HA idea, whe
the variancess0

2 are chosen to be in the regions~I! and~II !.
The simulation results are compared with the theoretical p
dictions. First, we choose the variancess0

250.052 and 0.021
belonging to the region~I!. As seen in Fig. 2, the in-degre
exponentsg in are robust to beg in'2 for both cases, while
the out-degree exponentsgout are different from each othe
asgout'2.7 fors0

2'0.052 andgout'3.0 fors0
2'0.146. The

simulation results are close to the theoretical predictions
cording to Eq. ~7!, gout'2.7 and gout'3.1, respectively.
Note that the deviation of the numerical simulation data fro
the analytic solution for largekin are due to finite system siz
effect. To see this, in the insets of Fig. 2, we show the
degree distributions for different system sizes for each ca
Indeed, the power-law region is more extended for lar
system sizes for both cases of Figs. 2~a! and 2~b!. Second,
we choosep50.010,g50.017, ands0

250.041 belonging to
the region~II !. The power-law behavior for the in-degre
distribution appears for largekin with the exponentg in'1 as
shown in Fig. 3, in agreement with the theoretical predict
without the logarithmic correction. For the out-degree dis
bution, the power-law behavior is also obtained with the e
ponentgout'1.8, which is in agreement with the theoretic
value 1.8 according to Eq.~7!.

VI. CONCLUSIONS

We have introduced a stochastic model for directed
networks, which evolves with time. In our model, the evol
tion of outgoing edges follows the stochastic multiplicati

e

n

FIG. 3. Plot of the in-degree and out-degree distributions dra
in the cumulated way,Pcum(k)5*k

`P(k)dk, for the casesp
50.010, g50.017, ands250.051, belonging to the region~II !.
The numerical data for the out-degree distribution show the pow
law behavior with the exponentgout'1.8, and those for the in-
degree distribution withg in'1. a50.0022 andb50.00016.
7-5
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process, while that of incoming edges does the preferen
attachment. With this model, we could illustrate why the
degree exponent for the WWW is robust, independent
different systems, while the out-degree exponent depend
different systems. We presented analytic results for both
in-degree and the out-degree distributions and confirmed
theoretical predictions by performing numerical simulatio
t

v.

M
d
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