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We investigate the dynamics of a two-dimensional array of oscillators with phase-shifted coupling. Each
oscillator is allowed to interact with its neighbors within a finite radius. The system exhibits various patterns
including squarelike pinwheels,(anti)spirals with phase-randomized cores, and antiferro patterns embedded in
(anti)spirals. We consider the symmetry properties of the system to explain the observed behaviors, and
estimate the wavelengths of the patterns by linear analysis. Finally, we point out the implications of our work
for biological neural networks.
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Large systems of interacting oscillators have been used to
explain the cooperative behaviors of numerous physical,
chemical, and biological systems[1–4]. When the coupling
between oscillators is sufficiently weak, we can describe the
dynamics of the system by phase variables defined on the
limit cycles [2,3]. In the phase-oscillator models, the cou-
pling proportional to the sine of the phase difference between
oscillators has been exploited due to the mathematical trac-
tability [2,4]. In spite of several successes in explaining the
synchronization phenomena, the simple sinusoidal coupling
fails to account for the collective frequency higher than natu-
ral frequency[5], dephasing phenomena[6], and effects of
time-delayed interactions[7]. To resolve these problems,
phase shifts in the sinusoidal coupling have been considered.
Most importantly, a nonzero phase shift is naturally contrib-
uted by the broken odd symmetry of a coupling function[8].
The previous works, however, studied only the cases of
phase shifts in the limited range. Moreover, they considered
only limited interactions via nearest-neighbor coupling
[5,7,8] or all-to-all global coupling[9], which seem to be too
restrictive. In the neurobiological systems, for example, it is
believed that actual coupling takes the forms between these
two extremes[10].

In this Rapid Communication, we investigate the effect of
phase-shifted coupling on the dynamics of a two-
dimensional array of coupled oscillators. Here we introduce
a finite interaction radius as realistic coupling and study over
the whole range of phase shifts. We find that various spatial
patterns come to emerge, and unravel that the symmetry
properties of the system play an important role on the forma-
tion of patterns.

We start with the equations of two coupled phase oscilla-
tors [5]

du1

dt
= v + K sinsu2 − u1 − ad,

s1d
du2

dt
= v + K sinsu1 − u2 − ad sv,K . 0d,

whereu1 and u2 represent the phases of oscillators, respec-
tively, v the natural frequency,K the coupling strength, and
a the phase shift. Phase shiftuau,p /2 leads to inphasing of
the two oscillators, whereasuau.p /2 leads to their antiphas-
ing. We find that this separation byuau=p /2 still holds for an
array of oscillators, but in a rather sophisticated manner as
shown below.

To investigate the phase-shift effect on the spatially ex-
tended systems, we study the following model equations:

dui j

dt
= v +

K

NsRdomn

8sinsumn− ui j − ad, s2d

whereui j denotes the phase of the oscillator at positionsi , jd
on a two-dimensional lattice, andomn8 ;omn,0,rmn,i jøR, where
rmn,i j is the distance between two oscillators located atsi , jd
and sm,nd. Each oscillator interacts withNsRd neighboring
oscillators within a finite distanceR. In the previous works,
the nearest-neighbor interactionssR=1d were considered for
the limited range ofa [5,8]. Motivated by nonlocal connec-
tions of neural systems[10], we explore the general cases
with R.1 as well asR=1, over the whole range ofa. The
nonlocal interactions may arise effectively in the reaction-
diffusion systems where chemical components constituting
the local oscillators are free of diffusion while the system
involves an extra diffusive component[11].

To reduce complexity of Eq.(2), we perform a transfor-
mation ui j →vt+Ui j , t→t /K, and get the following equa-
tions:

dUi j

dt
=

1

NsRdomn

8sinsUmn− Ui j − ad. s3d

Ui j maintains the same spatial patterns asui j , but not the
temporal behaviors(e.g., the phase velocity becomes differ-
ent). Equation(3) involves only two control parameters,a
and R. We numerically integrate Eq.(3) on a rectangular
array of 1003100 sites with periodic boundary conditions.
We select initialUi j randomly from the rangef−p ,pg.*Electronic address: hjeong@kaist.ac.kr
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We investigate emerging patterns asa varies in the range
f−p ,pg for given R (see Figs. 1–3). Based on our observa-
tions, we separate the cases into those ofR=1 and ofR.1.

Case R=1. If oscillators are coupled only with their near-
est neighbors, we get the phase diagram Fig. 1(a), which
shows the symmetric relations betweena.0 and a,0
cases, and betweenuau,p /2 anduau.p /2 cases.

At a=0, there appear vortices with equiphase lines of
zero curvature[8]. As a increases, equiphase lines around
vortices become twisted, and the vortices begin to show me-
andering behavior[8] [Fig. 2(a)]. Further increasinga cre-
ates many vortex-antivortex pairs and eventually induces tur-
bulent patterns untilaøp /2 [5,12] [Fig. 2(b)]. If we
decreasea from 0, similar behaviors are observed, but the
phase gradients near the vortices become reversed such that
phases increase radially outward from the vortices[Fig.
2(c)]. In a weak coupling regimeK,v, ui j in Eq. (2) grows
as time elapses, thus, waves propagate inwardly witha,0.
These waves are recently termed as “antispirals”[8,13]. We
can understand the antispiral formation fora,0 using a
symmetry transformationa→−a, Ui j →−Ui j which leaves
Eq. (3) invariant. In other words, the patterns for −a are
equivalent to those obtained fromUi j →−Ui j for a. Since
spirals emerge fora.0 andUi j →−Ui j reverses their phase
gradients, we get antispirals fora,0. We also find that the
dispersion relation fora,0 satisfies the known condition for
antispirals, i.e., the phase velocity is opposite to the group
velocity [13,14].

WhenR=1 anduau.p /2, antiferro patterns, where adja-
cent oscillators have a phase difference ofp are developed
while embedded in the(anti)spirals or turbulence observed at
a8=a−p [Figs. 2(d) and 2(e)]. An antiferro pattern itself, is
expected from the antiphasing of two coupled oscillators at
uau.p /2 in Eq. (1). Nonetheless, the existence of embed-
ding patterns fora8 is rather surprising, and we can explain

this as follows. By separatingUi j in Eq. (3) into the antiferro
phase Ui j

AF and the remaining phaseUi j
RM sUi j =Ui j

AF

+Ui j
RM,Umn

AF−Ui j
AF=p for rmn,i j =1d, we obtain

dUi j
RM

dt
=

1

4o
mn

8sinsUmn
AF − Ui j

AF + Umn
RM − Ui j

RM − ad

=
1

4o
mn

8sinfUmn
RM − Ui j

RM − sa − pdg. s4d

Consequently,Ui j
RM evolves in the same way asUi j for a8

=a−p in Eq. (3), and forms the embedding pattern.
Case R.1. When R is larger than 1, the nonlocality of

interactions imposes several changes on patterns[see Figs.
1(b) and 3].

First, for uau,p /2, nonlocal interactions develop
(anti)spirals with a phase-randomized core, contrary to the
well-defined singularity withR=1 [Figs. 3(a) and 3(b)]. As

FIG. 1. Phase diagram as a function ofa for fixed R. (a) The
nearest-neighbor couplingsR=1d. a1>0.29p. S, spirals; AS, anti-
spirals; T, turbulence; AF-T, antiferro pattern embedded in turbu-
lence; AF-AS (AF-S), antiferro pattern embedded in antispirals
(spirals). (b) The finite long-range couplingsR=6d. a1>0.15p,
a2>0.36p, a3>0.57p, a4>0.74p. P, planar oscillation; S-PRC
(AS-PRC), spirals(antispirals) with a phase-randomized cores; IR,
irregular pattern induced by expansion of a phase-randomized core;
NI, nearly incoherent pattern with a weak correlation of a length
scale,R; CPW, competing plane waves occupying their respective
domains of evolvable sizes; PW, plane waves. It is also observed
that squarelike pinwheels exist transiently with plane waves.

FIG. 2. (Color online) Patterns obtained from simulations with
R=1: (a) Spiralssa=0.2pd, (b) turbulencesa=0.4pd, (c) antispirals
sa=−0.2pd, (d) antiferro pattern embedded in antispiralssa
=0.8pd, (e) antispirals by removing antiferro phases from(d), (f)
the color code of the phase used for all figures. Insets of(a), (c), and
(d): Magnification of the boxed areas. Arrows in(a) and(c) denote
the propagation direction of waves withui j in Eq. (2) whenK,v.
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pointed out in Ref.[11], we can understand the incoherence
in the core as a result of long-range coupling of oscillators
which have a broad frequency range due to the gradient of
effective frequency near the core.

Second, foruau.p /2, plane waves emerge instead of an-
tiferro patterns observed withR=1. Squarelike pinwheels,
where singularities are arranged on a square lattice, also exist
transiently with plane waves[Fig. 3(d)]. These patterns are
essentially the same as those observed in the models of vi-
sual map formation[15] and time-delayed interactions[16].
We observe that these patterns have some discreteness for
small R.1 and are clearly developed forR*4. Further in-
creasingR just scales the spatial length unit in the continuum
limit. We can qualitatively explain the appearance of coher-
ent patterns such as plane waves. WhenR.1, closely lo-
cated oscillators within about a distanceR share the large
portion of neighbors commonly, thus they experience similar
influence. This induces the synchronous movement of the
closely located oscillators even for dephasing pairwise inter-
actions withuau.p /2. From this viewpoint, in the systems
such as models of visual map formation[15], positive short-
range coupling in the presence of negative long-range cou-
pling may not be crucial for the formation of coherent pat-
terns.

As a validation of our results in a realistic system, Fig. 4
displays the results with an array of the Morris-Lecar neural
oscillators. We take this system because it is well known that
two diffusively coupled Morris-Lecar oscillators exhibit an-
tiphase oscillations as in the case ofuau.p /2 in Eq. (1).
Actually, the system shows antiferro patterns embedded in
antispiralssR=1d and plane waves with squarelike pinwheels

sR.1d, as expected[Fig. 4; see Figs. 2(e) and 3(d) for com-
parison].

Now, we want to show that the symmetry argument also
provides a valuable insight into the quantitative features of
the patterns, especially the wavelengths. The transformation
a→a−p, t→−t leaves Eq.(3) invariant, thus the patterns
for a8=a−p are equivalent to those obtained byt→−t for
a. In addition,a→−a is equivalent toUi j →−Ui j as already
mentioned.Ui j →−Ui j changes only the direction of a wave
vector, and does not affect the stability of the mode in the
isotropic system. Consequently, by the time reversal, the sign
of the growth rate of a linear mode fora becomes reversed
for a8= ± sa−pd. For uau.p /2, the symmetries select only
the modes which are excluded foruau,p /2, and vice versa.

We perform a linear stability analysis to determine the
stability of the solution of Eq.(3), Ui jstd=kW ·rWi j +Vt, wherekW
denotes a wave vector,V the corresponding frequency, and

rWi j =si , jd. We addeeijW·rWi j+ht with sufficiently smalle to the
solution and substitute it into Eq.(3). The sign of the real
part ofh determines the growth rate of the perturbing modu-

lation with a wave vectorjW. If the sign of Reshd is negative,
the perturbation decays and the solution is linearly stable. By
the first order expansion and the continuum approximation,

Reshd = −
2 cosa

p
E E

ur8W uø1
cossrW · r8W dsin2SJW · r8W

2
Dd2r8W ,

s5d

whererW ;RkW and JW ;RjW. We replace sin2fsJW ·r8W d /2g by 1
2,

the statistical average taken overJW ’s, then obtain

Reshd . kReshdlJW = −
2

r
J1srdcosa sr ; urW ud, s6d

FIG. 3. (Color online) Patterns withR=6: (a) Spirals with a
phase-randomized coresa=0.2pd, (b) antispirals with a phase-
randomized coresa=−0.2pd, (c) irregular pattern induced by the
expansion of the phase-randomized coresa=0.4pd, (d) coexistence
of plane waves and squarelike pinwheelssa=pd.

FIG. 4. (Color online) Patterns realized in a two-dimensional
array of the Morris-Lecar systems. For the Morris-Lecar equations
and the parameters, see Ref.[6]. Here we chooseI =0.081, k
=0.01. (a) When R=1, antiferro patterns embedded in antispirals
are observed. The figure shows only antispirals after removing the
antiferro phases.(b) If R increases to 6, coexistence of plane waves
and squarelike pinwheels is observed.
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whereJ1 is the first-order Bessel function. It is verified that
Eq. (6) reflects the important properties of Eq.(5) qualita-
tively [17].

Figure 5(a) shows Reshd in Eq. (6) as a function ofr. The
sign of Reshd for givenr is reversed over thea= ±p /2 axis,
as discussed with the time-reversal argument. Reshd has the
most negative value atr=0 for uau,p /2, andr>5.1356 for
uau.p /2. Therefore, whenuau,p /2, planar solutions with
r=0 and patterns withr,0 are linearly stable, which is
consistent with the observed wavelengths comparable to the
array size. Whenuau.p /2, patterns with a wave vectorr
>5.1356 are stable instead of planar solutions and patterns
with r,0. We measure the actual wavelengths of the plane

waves both in our model and in the Morris-Lecar systems,
and the measured wavelengths turn out to be quite close to
our predictions[Fig. 5(b)].

From the observation that wavelengths withua u.p /2 are
comparable to the interaction radiusR for a two-dimensional
array, we speculate that dynamics withua u.p /2 on general
interaction networks might reflect the substructure charater-
istics of the networks well.

In conclusion, we have investigated the effect of phase-
shifted interactions in coupled oscillators in two dimensions,
and found that symmetry properties of the system are respon-
sible for the various pattern formation. Our simple model
succeeds in describing the essential features of patterns ob-
served in realistic models and experiments[1–3,8,11,13,15],
and gives an unified perspective of pattern behaviors. In gen-
eral, the presence of phase shift in coupling is naturally con-
tributed by the broken odd symmetry of coupling functions,
and thus our results may be applicable in the universal man-
ner.

We expect that in neurobiological systems, excitory(in-
hibitory) interactions correspond to the case of phase shift
a.0 sa,0d, whereas time delay in synapses determines
whether ua u,p /2 or not [18]. The specific realization of
patterns in the systems is left for further study.
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FIG. 5. (a) Reshd in Eq. (6) as a function ofr. (b) Wavelengths
of plane waves sld as a function of R. Predicted values
s2pR/5.1356=1.2235Rd fit the observed ones well in our model for
a=p and in the Morris-Lecar systems for the same parameters as in
Fig. 4, within relative errors of 0.02 and 0.03, respectively. The
wavelengths observed in our model are insensitive toa for the
plane-wave regime.
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