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We investigate the dynamics of a two-dimensional array of oscillators with phase-shifted coupling. Each
oscillator is allowed to interact with its neighbors within a finite radius. The system exhibits various patterns
including squarelike pinwheelgantispirals with phase-randomized cores, and antiferro patterns embedded in
(antspirals. We consider the symmetry properties of the system to explain the observed behaviors, and
estimate the wavelengths of the patterns by linear analysis. Finally, we point out the implications of our work
for biological neural networks.
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Large systems of interacting oscillators have been used tawhere #; and 6, represent the phases of oscillators, respec-
explain the cooperative behaviors of numerous physicatltively, o the natural frequenc¥ the coupling strength, and
chemical, and biological systeni$—4]. When the coupling a the phase shift. Phase shifj < /2 leads to inphasing of
between oscillators is sufficiently weak, we can describe thé¢he two oscillators, whereda| > /2 leads to their antiphas-
dynamics of the system by phase variables defined on thieg. We find that this separation ty| =7/ 2 still holds for an
limit cycles [2,3]. In the phase-oscillator models, the cou- array of oscillators, but in a rather sophisticated manner as
pling proportional to the sine of the phase difference betweeshown below.
oscillators has been exploited due to the mathematical trac- To investigate the phase-shift effect on the spatially ex-
tability [2,4]. In spite of several successes in explaining thetended systems, we study the following model equations:
synchronization phenomena, the simple sinusoidal coupling
fails to account for the collective frequency higher than natu-

ral frequency[5], dephasing phenomerjé], and effects of a6; —w+ Lz'sin(e -6 - a) 2
time-delayed interaction§7]. To resolve these problems, dt N(R) o mh

phase shifts in the sinusoidal coupling have been considered.
Most importantly, a nonzero phase shift is naturally contrib-
uted by the broken odd symmetry of a coupling functjish ~ Whered; denotes the phase of the oscillator at positiaf)
The previous works, however, studied only the cases ofn atwo-dimensional lattice, arf,,=Zmnor, . <r, Where
phase shifts in the limited range. Moreover, they considered,,; is the distance between two oscillators riocate(ﬂi a
only limited interactions via nearest-neighbor couplingand(m,n). Each oscillator interacts withi(R) neighboring
[5,7,8 or all-to-all global coupling 9], which seem to be too oscillators within a finite distancB. In the previous works,
restrictive. In the neurobiological systems, for example, it isthe nearest-neighbor interactiof®=1) were considered for
believed that actual coupling takes the forms between thesge limited range ofx [5,8]. Motivated by nonlocal connec-
two extremeq10]. tions of neural systempglO], we explore the general cases
In this Rapid Communication, we investigate the effect ofwith R>1 as well asR=1, over the whole range af. The
phase-shifted coupling on the dynamics of a two-nonlocal interactions may arise effectively in the reaction-
dimensional array of coupled oscillators. Here we introduceiiffusion systems where chemical components constituting
a finite interaction radius as realistic coupling and study ovethe local oscillators are free of diffusion while the system
the whole range of phase shifts. We find that various spatighvolves an extra diffusive componefitl].
patterns come to emerge, and unravel that the symmetry To reduce complexity of Eq2), we perform a transfor-

properties of the system play an important role on the formamation 6; — wt+6;, t—7/K, and get the following equa-

tion of patterns. tions:
We start with the equations of two coupled phase oscilla-
tors[5]
O L SO - O - ), @
401 _ K i 6o — g — dr  N(Rm )
dt -—w S|n(02 01 C(),
dé, @ O;; maintains the same spatial patterns s but not the
—zw+Ksin(b;—--a) (0,K>0), temporal behaviorge.g., the phase velocity becomes differ-
dt enf. Equation(3) involves only two control parameters,
and R. We numerically integrate Eq.3) on a rectangular
array of 100 100 sites with periodic boundary conditions.
*Electronic address: hjeong@Xkaist.ac.kr We select initial®;; randomly from the rangg-, 7].
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FIG. 1. Phase diagram as a function effor fixed R. (a) The
nearest-neighbor couplindR=1). «1=0.297. S, spirals; AS, anti- |
spirals; T, turbulence; AF-T, antiferro pattern embedded in turbu-
lence; AF-AS (AF-S), antiferro pattern embedded in antispirals
(spiraly. (b) The finite long-range couplingR=6). «1=0.15,
a2=0.36m, a3=0.57m, a4=0.74w. P, planar oscillation; S-PRC ‘1=.
(AS-PRQ, spirals(antispiral$ with a phase-randomized cores; IR, Bl
irregular pattern induced by expansion of a phase-randomized ﬁ‘.l,_;
NI, nearly incoherent pattern with a weak correlation of a length a
scale~R; CPW, competing plane waves occupying their respectiveL d

©)

domains of evolvable sizes; PW, plane waves. It is also observed
that squarelike pinwheels exist transiently with plane waves.

We investigate emerging patterns@varies in the range
[-m, ] for givenR (see Figs. 1-8 Based on our observa-
tions, we separate the cases into thos&»sflL and ofR> 1.

Case R=1If oscillators are coupled only with their near-
est neighbors, we get the phase diagram Fi@)), which
shows the symmetric relations between>0 and <0
cases, and betweea| < /2 and|a|> /2 cases. ,

At a=0, there appear vortices with equiphase lines of ¥=
zero curvaturg8]. As « increases, equiphase lines around ol
VO”'C‘?S becom? tW'Ste‘?" and the Vomce_s begln_ to show me- FIG. 2. (Color onling Patterns obtained from simulations with
andering behaviof8] [F'g' 2(a)]: Further InCreasingr Cré-  p—1: (g) Spirals(a=0.27), (b) turbulence(a=0.47), (c) antispirals
ates many vortex-antivortex pairs and eventually induces ture,=_0 27) (d) antiferro pattern embedded in antispirala
bulent patterns untila</2 [5,12 [Fig. Ab)]. If we  =q.8x), (e) antispirals by removing antiferro phases frad), (f)
decreasex from 0, similar behaviors are observed, but thetne color code of the phase used for all figures. Inseta)pfc), and
phase gradients near the vortices become reversed such th@t Magnification of the boxed areas. Arrows (@ and(c) denote
phases increase radially outward from the vorti¢E#y.  the propagation direction of waves with in Eq. (2) whenK < o.
2(c)]. In a weak coupling regimi < w, @; in Eq.(2) grows
T e D e e {25 folws. By separatr) n 4.9 i e antfeo
can understand the antispiral formation fex<0 using a E%ér?n\? gRF_SQS: :Thfor rreminll?gwepr;ﬁ:?# (0=
symmetry transformatiom— —a, 6;;—-6;; which leaves ormn Ml

—T/2

)

Eq. (3) invariant. In other words, the patterns for-are dofM 1.,

equivalent to those obtained frof;; —-6;; for «. Since _d:_ == 2 sin(O - 04F + O - fM - )

spirals emerge fo>0 and©;; ——0O;; reverses their phase m

gradients, we get antispirals far<0. We also find that the 1o,

dispersion relation forw < 0 satisfies the known condition for = ZE sif Oy - 0"~ (a = m)]. (4)

antispirals, i.e., the phase velocity is opposite to the group mn

velocity [13,14. ConsequentIyBiFj‘"’I evolves in the same way a3; for o’
WhenR=1 and|a| > /2, antiferro patterns, where adja- =a - in Eq. (3), and forms the embedding pattern.

cent oscillators have a phase differencenoére developed Case R>1. WhenR is larger than 1, the nonlocality of

while embedded in théanti)spirals or turbulence observed at interactions imposes several changes on pattees Figs.

o' =a—m7 [Figs. 2d) and 2e)]. An antiferro pattern itself, is 1(b) and 3.

expected from the antiphasing of two coupled oscillators at First, for |a|<w/2, nonlocal interactions develop
|a|>m/2 in Eq. (1). Nonetheless, the existence of embed-(antispirals with a phase-randomized core, contrary to the
ding patterns fore' is rather surprising, and we can explain well-defined singularity withR=1 [Figs. 3a) and 3b)]. As
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FIG. 4. (Color onling Patterns realized in a two-dimensional
array of the Morris-Lecar systems. For the Morris-Lecar equations
and the parameters, see R§6]. Here we choosd =0.081, k
=0.01.(a) When R=1, antiferro patterns embedded in antispirals
are observed. The figure shows only antispirals after removing the
antiferro phasegb) If R increases to 6, coexistence of plane waves
and squarelike pinwheels is observed.

[ 'ill'."(_;l
asdingl

- ' (R>1), as expectefFig. 4; see Figs. @) and 3d) for com-
© @ parisor.

FIG. 3. (Color onling Patterns withR=6: (a) Spirals with a N.OW’ we want to S.ho.W th.at the Symmet.ry grgument also
phase-randomized coréx=0.2x), (b) antispirals with a phase- provides a valuable_ insight into the quantitative features pf
randomized corda=-0.2), () irregular pattern induced by the the patterns, especially the wavelengths. The transformation

expansion of the phase-randomized care0.47), (d) coexistence @ — @~ m, 7—— leaves Eq(3) invariant, thus the patterns
of plane waves and squarelike pinwhegis= ). for o' =a—m are equivalent to those obtained by~ —7 for

a. In addition,a— -« is equivalent td;; — -O;; as already
pointed out in Ref[11], we can understand the incoherencementioned ©;; —-6;; changes only the direction of a wave
in the core as a result of long-range coupling of oscillatorsvector, and does not affect the stability of the mode in the
which have a broad frequency range due to the gradient dfotropic system. Consequently, by the time reversal, the sign
effective frequency near the core. of the growth rate of a linear mode far becomes reversed

Second, fofa|> /2, plane waves emerge instead of an-for a’'=z(a-m). For |a|> /2, the symmetries select only
tiferro patterns observed witR=1. Squarelike pinwheels, the modes which are excluded fa <#/2, and vice versa.
where singularities are arranged on a square lattice, also exist We perform a linear stability analysis to determine the
transiently with plane wavefig. 3(d)]. These patterns are stability of the solution of Eq(3), eij(r):IZ-Fij +Q 7, wherek
essentially the same as those observed in the models of vilenotes a wave vectaf) the corresponding frequency, and
sual map formatiori15] and time-delayed interactiod6]. . =(j j). We adde€"i*7" with sufficiently smalle to the
We observe that these patterns have some dlscrete_ness lution and substitute it into Eg3). The sign of the real
smallR>1 and are clearly developed f&=4. Further in- 4t of 5 determines the growth rate of the perturbing modu-

creasingr just scales the spatial length unit in the continuumla,[ion with a wave vectoE If the sign of Ré) is negative
limit. We can qualitatively explain the appearance of coher-th turbation d ' dth gl ton i 7|7 | gt bl’ B
ent patterns such as plane waves. Wiken1, closely lo- € perturbation decays and the solution IS fineéarly stablé. By

cated oscillators within about a distanBeshare the large the first order expansion and the continuum approximation,

portion of neighbors commonly, thus they experience similar

influence. This induces the synchronous movement of the Lo
closely located oscillators even for dephasing pairwise inter- 2 cosa N =R R
actions with|a|> /2. From this viewpoint, in the systems  R&7)=- o Jf' cosp - )sir? 2 o
such as models of visual map formatig®], positive short- rlst

range coupling in the presence of negative long-range cou- (5)
pling may not be crucial for the formation of coherent pat-

terns.

As a validation of our results in a realistic system, Fig. 4where 5=Rk and Z =Ré. We replace s#i(Z r')/2] by 2,
displays the results with an array of the Morris-Lecar neura . = .
oscﬁlla)tlors. We take this system gecause it is well known thakhe statistical average taken 0vEls, then obtain
two diffusively coupled Morris-Lecar oscillators exhibit an-
tiphase oscillations as in the case |af> /2 in Eq. (1).

Actually, the system shows antiferro patterns embedded in Re(7) = (Re( 7))z = _ng(p)Cosa (p=1p]
antispirals(tR=1) and plane waves with squarelike pinwheels . P

), (6
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lof <mi2 = waves both in our model and in the Morris-Lecar systems,
o] > /2 wwen 14 and the measured wavelengths turn out to be quite close to
% 51356 10 our predictiongFig. 5(b)]. _
G < Prediction — From the observation that wavelengths with>/2 are
& 6 comparable to the interaction radiRfor a two-dimensional

o=t O
Morris—Lecar System A

array, we speculate that dynamics wiitl > /2 on general
interaction networks might reflect the substructure charater-
istics of the networks well.
In conclusion, we have investigated the effect of phase-
shifted interactions in coupled oscillators in two dimensions,
. ; and found that symmetry properties of the system are respon-
(25 1356 1. 2238) i the abserved ones welln our model for SPIE Tor the various pattern formation. Our simple mode
S e succeeds in describing the essential features of patterns ob
a=m and in .the Morrls-Lecar systems for the same parameters as iDarved in realistic models and experimefits3,8,11,13,1F
\',:\/'g\'/:l'ér:’é'ttgnorgztr'\\;g deir:logsuffm%gél Z':: %g:r;sﬁigffgetlzgheand gives an unified perspective of pattern behaviors. In gen-
plane-wave regime. eral, the presence of phase shift in coupling is naturally con-
tributed by the broken odd symmetry of coupling functions,

. , . . . and thus our results may be applicable in the universal man-
whereJ; is the first-order Bessel function. It is verified that y PP

Eqg. (6) reflects the important properties of Ed) qualita-
tively [17].

Figure %a) shows Ré7) in Eq.(6) as a function op. The
sign of Ré ) for givenp is reversed over the=+ 7/ 2 axis,
as discussed with the time-reversal argument.zRéas the
most negative value @t=0 for || < 7/2, andp=5.1356 for
|a|> /2. Therefore, whema| < /2, planar solutions with The authors thank Seung Kee Han for fruitful communi-
p=0 and patterns wittp~0 are linearly stable, which is cations. P.K. and H.J. acknowledge financial support from
consistent with the observed wavelengths comparable to thhe Ministry of Information and Communication of Korea
array size. Whena|> /2, patterns with a wave vectgr  through Grant No. IMT2000-B3-2. T.K. and H.M. acknowl-
=5.1356 are stable instead of planar solutions and patterrexdge support from the Basic Research Program of KOSEF
with p~0. We measure the actual wavelengths of the plan¢hrough Grant No. R01-1999-000-00019ZD02.
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FIG. 5. (a) Re(7) in Eqg. (6) as a function op. (b) Wavelengths

We expect that in neurobiological systems, excit@ny
hibitory) interactions correspond to the case of phase shift
a>0 (a<0), whereas time delay in synapses determines
whether |a|<7/2 or not [18]. The specific realization of
patterns in the systems is left for further study.

o' (K)=w+(K?/4- 1)K sin « for waves far from the spiral core.
When K<w, the phase velocity,n=w'/k=w/k and the
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