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We investigate the properties of the spanning trees of various real-world and model networks. The spanning
tree representing the communication kernel of the original network is determined by maximizing the total
weight of the edges, whose weights are given by the edge betweenness centralities. We find that a scale-free
tree and shortcuts organize a complex network. Especially, in ubiquitous scale-free networks, it is found that
the scale-free spanning tree shows very robust betweenness centrality distributions and the remaining shortcuts
characterize the properties of the original network, such as the clustering coefficient and the classification of
scale-free networks by the betweenness centrality distribution.
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Complex network theories have attracted much attention
in the last few years with advances in the understanding of
the highly interconnected nature of various social, biological,
and communication systems[1,2]. The inhomogeneity of
network structures is conveniently characterized by the de-
gree distributionPskd, the probability for a vertex to havek
edges toward other vertices. The emergence of ascale-free
distributionPskd,k−g has been reported in many real-world
networks, such as the coauthorship networks in social sys-
tems[3], the metabolic networks and protein interaction net-
works in biological systems[4,5], and Internet and World
Wide Web in technological systems[6,7].

It is important to study the dynamics as well as the struc-
tural properties of networks because of their applications to
the real world. However, the dynamical phenomena of net-
works such as traffic and information flow are very difficult
to predict from local information due to the rich microstruc-
tures and corresponding complex dynamics. Thus, to under-
stand the dynamical phenomena of networks, one must know
the global properties of networks as well as the local prop-
erties such as the degree distribution. It is the reason why the
dynamics of complex networks has not been studied system-
atically so far.

Due to their inhomogeneous structure, the traffic or infor-
mation flow of complex networks would be also very inho-
mogeneous. As a simplified quantity to measure the traffic of
networks, it is natural to use the betweenness centrality(BC)
[8–10]. The BC ofG, either a vertex or an edge, is defined as

bsGd = o
iÞ j

bsi, j ;Gd = o
iÞ j

csi, j ;Gd
csi, jd

, s1d

wherecsi , j ;Gd denotes the number of shortest paths from a
vertex i to j through G, and csi , jd is the total number of
shortest paths fromi to j . In terms of the packet in the Inter-
net, assuming that every vertex sends a unit packet to each of
the other vertices, BC is the average amount of packets pass-
ing though a vertex or an edge.

In scale-free networks, the distribution of the vertex BC is
known to follow a power law with an exponent of either 2.2
or 2.0[11]. Though the edge BC distribution does not follow

the power law exactly, the distribution of the edge BC is also
very inhomogeneous in scale-free networks[12]. This indi-
cates that there exist extremely essential edges having large
edge BC’s which are used for communication very fre-
quently. Thus, one can imagine a subnetwork constructed
only by these essential edges with global connectivity re-
tained. We regard this network as a communication kernel,
which handles most of the traffic in a network.

For simplicity, we define the communication kernel of a
network as the spanning tree with a set of edges maximizing
the summation of their edge BC’s on the original networks.
The constructing procedure is very similar to the minimum
spanning tree algorithm[13]. We repeatedly select an edge
according to the priority of the edge BC and add the edge to
the tree if it does not make any loop until the tree includes all
vertices[14]. Note that the residual edges can be regarded as
shortcuts since they shorten the paths on the spanning tree.
This concept of the spanning tree and shortcuts corresponds
to that of a one-dimensional(1D) regular lattice and short-
cuts, respectively, in the small-world networks[15].

In this paper, we investigate the structural and dynamical
properties of the spanning tree of complex networks and the
role of shortcuts in the networks. Since most real-world net-
works show scale-free behavior, we mainly consider various
scale-free real-world and model networks and we discuss the
case of homogeneous networks at the end. In various real-
world and model networks, we find that the spanning trees
show scale-free behavior in the degree distributions. Espe-
cially, for all scale-free networks, we find that the vertex and
edge BC distributions follow a power law with the robust
exponenth=2.0, regardless of the exponent valueh=2.0 or
2.2 of original networks. In addition to that, it turns out that
the shortcut length distribution shows either Gaussian-like or
monotonically decaying behavior depending on the BC dis-
tribution exponenth of original scale-free networks.

First, we confirm the spanning tree to be a communication
kernel by estimating the relative importance of selected
edges in the obtained spanning tree and those from the ran-
dom selection. If we select the edges randomly, the fractionf
of the edge BC summation over the selected edges and that
over the total edge would be approximatelyf0, the ratio of
the number of edges in the tree and that of the network.
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However, it turns out that the real set of selected edges from
the spanning tree possesses over,50% of the total edge BC
in most networks(see Table I), and thereforef @ f0. For in-
stance, the coauthorship network shows thatf is nearly 3
times larger thanf0 even though the number of edges in the
spanning tree is only 16% of that in the original network.
Thus we can call this spanning tree of the scale-free network
the communication kernel. However, for the case of homo-
geneous networks, the difference betweenf and f0 is not
significant because of the randomness of the network struc-
ture.

To find out more about this kernel, we measure the degree
distribution of the spanning trees. It turns out that the degree
distribution always follows the power law, which is tested for
various networks including the Barabási-Albert(BA) model
[16], coauthorship network in neuroscience(NEURO) [17],
protein interaction networks of yeast(PIN) [18], Internet at
the autonomous systems(AS) level [19], and so on(see Fig.
1 and Table I). However, the details of the degree distribution
depend on each of the networks. The exponents of the
power-law degree distributions of the spanning trees do not
always agree with those of the original networks(see Table
I). This indicates that the spanning trees are far from the
random sampling of edges.

To confirm the scale-free behavior of the spanning tree,
we investigate the time evolution of the degree in a growing
network. Assuming that a fixed number of new vertices are
introduced at each time step in the growing networks, it is
well known that the degree following the power lawkistd
, tb leads to the scale-free degree distributionPskd.k−g

[20], wherekistd is the degree of the vertexi at time t and
g=1/b+1. This argument can be naturally applied for the
spanning tree of the BA model since it grows constantly. At
each time step of growth in the BA model, we obtain the
spanning tree and measure the degree of every vertex. In Fig.
2(a), we show the time evolution of the degrees of several

vertices. The degrees evolve withb=0.58, which leads to
gs=2.7 of the spanning tree, which agrees with our measure-
ment from the actual degree distribution.

The high correlation between the degrees from spanning
trees and the original networks also guarantees the preserved
scale-free behavior of the spanning trees. The correlation co-
efficient between the degree of the original networkk and the
degree of its spanning treesks is defined as the Pearson’s
correlation coefficient betweenk and ks, rp=skkksl−kkl
3kksld /Îskk2l−kkl2dskks

2l−kksl2d. Most networks exhibit a
strong degree correlation between the spanning tree and its
original network(see Table I). We find that the degrees of

TABLE I. The scaling exponents and correlation coefficients of the spanning trees and original networks for various real-world networks
and models. Tabulated for each network is the system sizeN, the mean degreekkl, the ratio of edge BC summation over the edges selected
for the spanning tree to total edge BCf, the ratio of the number of edges in spanning trees and original networksf0, the degree exponentg,
the BC exponenth, the assortativityr, and the degree correlation coefficientrp between the original network and the spanning tree. Thes
subscripts indicate quantities for the spanning trees. Here we consider only the largest cluster of networks when the network has several
disjoint parts.

Network N kkl f f0 g gs h hs r r s rp Ref.

NEURO 190382 12.5 0.46 0.16 2.1(1) 2.4(1) 2.2(1) 2.0(1) 0.601 20.138 0.538 [17]

arxiv.org 44336 10.79 0.54 0.19 — 2.1(1) — 2.0(1) 0.352 20.119 0.497 [10]

arxiv.org/cond-mat 13860 6.43 0.61 0.31 — 2.7(1) — 2.0(1) 0.157 20.187 0.714 [10]

PIN 4926 6.55 0.54 0.3 — 2.3(1) 2.3(1) 2.0(1) 20.139 20.161 0.814 [18]

BA model 23105 4 0.71 0.5 3.0(1) 2.7(1) 2.2(1) 2.0(1) ,0 ,0 0.973 [16]

Holme-Kim model 104 6 0.58–0.71 0.33 3.0(1) 2.4(1) 2.2(1) 2.0(1) 20.033 20.117 0.947 [23]

Static model ,104 ,4 0.65 ,0.5 2.6–3.0 2.4–2.8 2.2(1) 2.0(1) 20.022 20.067 0.938 [24]

Fitness model 23105 4 0.73 0.5 2.25 2.2(1) 2.2(1) 2.0(1) ,0 ,0 0.994 [25]

Internet AS 10514 4.08 0.65 0.5 2.1(1) 2.1(1) 2.0(1) 2.0(1) 20.185 20.183 0.929 [19]

Adaptation model ,105 11.9 0.503 0.17 2.1(1) 2.1(1) 2.0(1) 2.0(1) 20.219 20.215 0.749 [26]

WS sp=1d 104 100 0.022 0.02 — 3.0(1) — 1.7(1) ,0 20.176 0.549 [15]

ER 104 100 0.022 0.02 — 2.5(1) — 1.7(1) ,0 20.209 0.453 [27]

FIG. 1. Degree distributions of the spanning treesssd and their
original networkss+d, (a) BA model with m=2, (b) coauthorship
network, NEURO,(c) PIN, and(d) Internet AS. The data points are
shifted vertically to enhance the visibility.
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networks skd and their spanning treessksd roughly follow
ks,ka, which leads the degree distribution of the spanning
trees,Psksd,ks

−gs, with gs=sg+a−1d /a. In Fig. 2(b), we
show that the BA model hasa=1.08, which leads togs
=2.75, in good agreement with the result obtained by direct
measurement.

The assortativity is another interesting feature of the span-
ning trees. The assortativityr [21], which measures the de-
gree correlation of vertices directly connected by an edge, is
defined byr =sk jkl−k jlkkld / skk2l−kkl2d, where j and k are
the remaining degrees at the end of an edge and the angular
brackets indicate the average over all edges. We find that all
spanning trees show dissortative or neutral behavior regard-
less of the assortativity of the original networks(see Table I).
Thus, we can propose that it is a general characteristic of the
spanning trees of scale-free networks. We need further study
to prove our conjecture.

We find that the BC distribution of the spanning tree is
robust regardless of its original network in scale-free real-
world and model networks. The vertex and edge BC distri-
butions of the spanning trees follow a power law with the
robust exponenths=2.0 (see Fig. 3 and Table I). This is
consistent with the numerical and analytical results for the
growing scale-free tree model[11]. The same BC distribu-
tion for vertices and edges is the general feature of trees. In
the mean-field picture, the largest BC of edges belonging to
a vertex gives a dominant contribution to the BC of the ver-
tex [22]. For our obtained spanning trees, we verify numeri-
cally that the largest edge BC of a vertex almost equals the
vertex BC for most of the vertices[see Fig. 3(c)].

The spanning trees show robust features, such as a scale-
free degree distribution, robust BC distribution, and dissor-
tative or neutral degree correlation. Here one can ask what is
the role of shortcuts which are not included in the spanning
tree. To answer this question, we focus on the length of the
shortcuts on the spanning trees. The length of a shortcut
between verticesi and j is defined as the minimum number
of hops fromi to j on the spanning tree. The nonzero clus-
tering coefficient of the original networks can now be ex-
plained by short-length shortcuts. Obviously, shortcuts with
length 2 build triangles of vertices and hence increase the
clustering coefficient. All networks with nonvanishing clus-
tering coefficient have a significant amount of shortcuts with
length 2(see Fig. 4).

Interestingly, in scale-free networks, we find that there are
two types in the shortcut length distribution(see Fig. 4). In
one distribution(type I), most shortcuts distribute near a
large mean value, similar to the Gaussian distribution, which
shows that the network is the longer-loop dominant structure.
In the other distribution(type II), the number of shortcuts
monotonically decreases as the length increases, which indi-
cates that the network is tree like. Most of the networks
including the BA model, coauthorship networks, and PIN
belong to type I. On the other hand, Internet AS and the
adaptation model are type II. We find that our classification
exactly agrees with the grouping by exponent of the BC

FIG. 2. (a) Time evolution for the degree of two vertices added
to system att=5 ssd and t=55 shd, where the dashed line is a
linear fit with slope 0.58.(b) Scattered plot for degree of the origi-
nal networkskd and the spanning treesksd. The dashed line has a
slope of 1.08.

FIG. 3. The vertex BC distribution of the original networksssd
and the spanning treeshd for (a) the BA model averaged over ten
ensembles and(b) Internet AS. In(a), the solid and dashed lines
have slopes of 2.0 and 2.2, respectively. The lines in(b) are linear
fits with slope 2.0. The data points are shifted vertically to enhance
the visibility. (c) The ratio of the largest value of edge BCsbmaxd to
vertex BCsbd of a vertex with degreeks for the BA trees+d and the
spanning trees of the BA models3d, NEUROshd, Internet ASssd,
and PINsnd networks.

FIG. 4. The length distribution of shortcuts for(a) the BA model
sm=2d, (b) coauthorship network of neuroscience,(c) Internet AS,
and (d) adaptation model with 105 vertices.nssdd and n0 are the
number of shortcuts with lengthd and total number of shortcuts,
respectively.
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distribution[11]. The networks belonging to type I or type II
show vertex BC distributions with an exponent of 2.2 or 2.0,
respectively. Gohet al. [11] characterized the networks with
a BC exponent of 2.0 as the linear mass-distance relation,
which shows that the shortest paths of the networks are simi-
lar to trees. Our result also supports the treelike structures of
the type-II networks and gives an intuitive explanation of the
reason why the BC exponents of the type-II networks are as
same as those of the scale-free trees. Because there exist
mostly short-length shortcuts in the type-II networks with
monotonically fast-decaying shortcut length distributions,
the structure of the original networks is not significantly dif-
ferent from their spanning trees. Therefore, the BC expo-
nents of the type-II networks are unchanged at 2.0 of their
spanning trees.

Finally, we also study the spanning tree of homogeneous
networks, the Erdös-Rényi(ER) random network[27] and
the Watts-Strogatz(WS) small-world network[15] (see Fig.
5 and Table I). The sparse versions of networks, which have
104 vertices and average degree 4, show no scale-free behav-
ior. They have no hub because the degree of the spanning
tree has to be smaller than that of the original network. But
interestingly, if the network gets much denser by increasing
the average degree to 100, scale-free behavior appears in the
degree distribution of the spanning tree up tok, kkl. How-
ever, it does not share the properties with the trees from
scale-free networks such as the BC exponent[28].

In summary, we have studied the properties of the span-
ning trees with maximum total edge betweenness centrality.
We find that a complex network can be decomposed into
scale-free trees and addition shortcuts on it. In various scale-
free real-world and model networks, the scale-free spanning
trees represent the communication kernels on networks. The
scale-free spanning trees show robust characteristics in the
degree correlation and the betweenness centrality distribu-
tion. The remaining shortcuts are responsible for detailed
characteristics such as the clustering property and the BC
distribution of scale-free networks. The distribution of the
shortcut length clearly distinguishes the scale-free networks
into two types, which coincides with the classes determined

from the BC exponents[11]. We also find that the scale-free
behavior can be found in homogeneous networks. We note
that the property of the spanning tree generated from other
methods was independently studied by other groups[29,30].
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