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Scale-free trees: The skeletons of complex networks
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We investigate the properties of the spanning trees of various real-world and model networks. The spanning
tree representing the communication kernel of the original network is determined by maximizing the total
weight of the edges, whose weights are given by the edge betweenness centralities. We find that a scale-free
tree and shortcuts organize a complex network. Especially, in ubiquitous scale-free networks, it is found that
the scale-free spanning tree shows very robust betweenness centrality distributions and the remaining shortcuts
characterize the properties of the original network, such as the clustering coefficient and the classification of
scale-free networks by the betweenness centrality distribution.
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Complex network theories have attracted much attentiothe power law exactly, the distribution of the edge BC is also
in the last few years with advances in the understanding o¥ery inhomogeneous in scale-free netwofkg]. This indi-
the highly interconnected nature of various social, biologicalcates that there exist extremely essential edges having large
and communication systemd,2]. The inhomogeneity of edge BC’'s which are used for communication very fre-
network structures is conveniently characterized by the dequently. Thus, one can imagine a subnetwork constructed
gree distributionP(k), the probability for a vertex to have ~ Only by these essential edges with global connectivity re-
edges toward other vertices. The emergence séae-free talr_led. We regard this network_ as a communication kernel,
distribution P(k) ~ k™ has been reported in many real-world Which handles most of the traffic in a network.

networks, such as the coauthorship networks in social sysﬁegfgri'?splfgﬁ Vgﬁn?fﬁTreeéh@iﬁogngrg?zgogsk?nrgiiln?f;ﬁ
tems[3], the metabolic networks and protein interaction net- b 9 9 9

Do . the summation of their edge BC’s on the original networks.
works in biological system$4,5], and Internet and World Th : . o L
X . . e constructing procedure is very similar to the minimum
Wide Web in technological systeni6,7]. ucting p Wre s Very simi inimu

) | spanning tree algorithifiL3]. We repeatedly select an edge
Itis |mpor'tant to study the dynamics as vyell as .the_ Struc'according to the priority of the edge BC and add the edge to
tural properties of networks because of their applications tqne tree if it does not make any loop until the tree includes all
the real world. However, the dynamical phenomena of netyertices[14]. Note that the residual edges can be regarded as
works such as traffic and information flow are very difficult shortcuts since they shorten the paths on the Spanning tree.
to predict from local information due to the rich microstruc- This concept of the spanning tree and shortcuts corresponds
tures and corresponding complex dynamics. Thus, to undeto that of a one-dimensionglD) regular lattice and short-
stand the dynamical phenomena of networks, one must knowuts, respectively, in the small-world networKi5].
the global properties of networks as well as the local prop- In this paper, we investigate the structural and dynamical
erties such as the degree distribution. It is the reason why thgroperties of the spanning tree of complex networks and the
dynamics of complex networks has not been studied systenmele of shortcuts in the networks. Since most real-world net-
atically so far. works show scale-free behavior, we mainly consider various
Due to their inhomogeneous structure, the traffic or infor-scale-free real-world and model networks and we discuss the
mation flow of complex networks would be also very inho- case of homogeneous networks at the end. In various real-
mogeneous. As a simplified quantity to measure the traffic ovorld and model networks, we find that the spanning trees
networks, it is natural to use the betweenness centr@i@)  show scale-free behavior in the degree distributions. Espe-
[8-10. The BC ofG, either a vertex or an edge, is defined ascially, for all scale-free networks, we find that the vertex and
o edge BC distributions follow a power law with the robust
b(G) =S b(i,j:G) =3 C("_J ?_G), 1) exponent,=2.0, regardless of the exponent valge2.0 or
iZj iz c(i,]) 2.2 of original networks. In addition to that, it turns out that
the shortcut length distribution shows either Gaussian-like or
wherec(i,j;G) denotes the number of shortest paths from amonotonically decaying behavior depending on the BC dis-
vertexi to j through G, andc(i,j) is the total number of tribution exponenty of original scale-free networks.
shortest paths fromto j. In terms of the packet in the Inter- First, we confirm the spanning tree to be a communication
net, assuming that every vertex sends a unit packet to each kérnel by estimating the relative importance of selected
the other vertices, BC is the average amount of packets passeges in the obtained spanning tree and those from the ran-
ing though a vertex or an edge. dom selection. If we select the edges randomly, the fradtion
In scale-free networks, the distribution of the vertex BC isof the edge BC summation over the selected edges and that
known to follow a power law with an exponent of either 2.2 over the total edge would be approximatély the ratio of
or 2.0[11]. Though the edge BC distribution does not follow the number of edges in the tree and that of the network.
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TABLE I. The scaling exponents and correlation coefficients of the spanning trees and original networks for various real-world networks
and models. Tabulated for each network is the systemMsizke mean degreg), the ratio of edge BC summation over the edges selected
for the spanning tree to total edge B(Cthe ratio of the number of edges in spanning trees and original netigritee degree exponent
the BC exponent, the assortativity, and the degree correlation coefficiegtoetween the original network and the spanning tree. ghe
subscripts indicate quantities for the spanning trees. Here we consider only the largest cluster of networks when the network has several
disjoint parts.

Network N (ky f fo v Ys n s r rs Mo Ref.
NEURO 190382 125 0.46 016 213 241 221) 201) 0.601 -0.138 0.538 [17]
arxiv.org 44336  10.79 0.54 0.19 — 2 — 2.01 0352 -0.119 0.497 [10Q]
arxiv.org/cond-mat 13860 6.43 0.61 0.31 — @y — 201 0.157 -0.187 0.714 [1Q]
PIN 4926 6.55 0.54 0.3 — 23 231 201 -0.139 -0.161 0.814 [18]
BA model 2x10°0 4 0.71 05 3.0) 271 221 2.01) ~0 ~0 0973 [16]
Holme-Kim model 16 6 0.58-0.71 0.33 3@ 241 2.1) 2.01) -0.033 -0.117 0.947 [23]
Static model ~100 ~4 0.65 ~05 2.6-3.0 24-28 22 2.01) -0.022 -0.067 0.938 [24]
Fitness model X100 4 0.73 0.5 2.25 2@) 2.21) 2.02) ~0 ~0  0.994 [25]
Internet AS 10514  4.08 0.65 05 213 211 201 201 -0.185 -0.183 0.929 [19
Adaptation model ~10° 11.9 0.503 0.17 2(1) 211 201 201 -0.219 -0.215 0.749 [26]
WS (p=1) 10 100 0.022 0.02 — 3@) — 1.71) ~0 —0.176 0.549 [15]
ER 10 100 0.022 0.02 — 23) — 1.71) ~0 —0.209 0.453 [27]

However, it turns out that the real set of selected edges fromertices. The degrees evolve wig=0.58, which leads to

the spanning tree possesses ov@0% of the total edge BC y,=2.7 of the spanning tree, which agrees with our measure-
in most networkgsee Table), and thereford > f,. For in-  ment from the actual degree distribution.

stance, the coauthorship network shows thas nearly 3 The high correlation between the degrees from spanning
times larger tharfy even though the number of edges in thetrees and the original networks also guarantees the preserved
spanning tree is only 16% of that in the original network. scale-free behavior of the spanning trees. The correlation co-
Thus we can call this spanning tree of the scale-free networkfficient between the degree of the original netwodnd the

the communication kernel. However, for the case of homodegree of its spanning treds is defined as the Pearson’s
geneous networks, the difference betwdeand f, is not  correlation coefficient betweek and ks, r,=((kky—(k)
significant because of the randomness of the network Stfqu(kQ)/\,/(<k2)—<k)2)((k§>—<ks>2). Most networks exhibit a

ture. strong degree correlation between the spanning tree and its

~ To find out more about this kernel, we measure the degregyiginal network(see Table ). We find that the degrees of
distribution of the spanning trees. It turns out that the degree

distribution always follows the power law, which is tested for 10° ey 10° —
various networks including the Barabasi-AlbéBA) model R (2) BA ™ (b) NEURO
[16], coauthorship network in neurosciend¢EURO) [17], 07 Y ) 102 1
protein interaction networks of yead®IN) [18], Internet at o 10t F “%:«Q 15 ..
the autonomous systertaS) level [19], and so on(see Fig. T 2 < 0
1 and Table). However, the details of the degree distribution e T
depend on each of the networks. The exponents of the 108+ “3;‘;@-
power-law degree distributions of the spanning trees do not Sl sl *3 10°®
always agree with those of the original networkse Table 1o T e !
). This indicates that the spanning trees are far from the 100 . : 100
random sampling of edges. s\ (©P
To confirm the scale-free behavior of the spanning tree, NN A 102
we investigate the time evolution of the degree in a growing - ERY _—
network. Assuming that a fixed number of new vertices are Ttk %o, JE
introduced at each time step in the growing networks, it is 5 106
well known that the degree following the power ldk(t) 108 L 'éxm_ %o
~1t# leads to the scale-free degree distributiB(k) =k . L 10 Bt it et
[20], wherek;(t) is the degree of the verteixat timet and 10° ‘°1k 10° 10° 10’ ‘k°2 10°

vy=1/B+1. This argument can be naturally applied for the

spanning tree of the BA model since it grows constantly. At F|G. 1. Degree distributions of the spanning tré@3 and their
each time step of growth in the BA model, we obtain theoriginal networks(+), (a8) BA model with m=2, (b) coauthorship
spanning tree and measure the degree of every vertex. In Figetwork, NEURO(c) PIN, and(d) Internet AS. The data points are
2(a), we show the time evolution of the degrees of severakhifted vertically to enhance the visibility.
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FIG. 2. (a) Time evolution for the degree of two vertices added ~ 1-%
to system at=5 (O) and t=55 (1), where the dashed line is a 3 8'2
linear fit with slope 0.58(b) Scattered plot for degree of the origi- < 04
nal network(k) and the spanning treks). The dashed line has a °'§
slope of 1.08. 10° 10 10° 10° 10*
k

s

networks (k) and their spanning treeks) roughly follow
ks~k®, which leads the degree distribution of the spanning FiG. 3. The vertex BC distribution of the original networl)
trees, P(k) ~ ks, with y=(y+a-1)/a. In Fig. Ab), we  and the spanning tre@l) for (a) the BA model averaged over ten
show that the BA model haa=1.08, which leads toys  ensembles andb) Internet AS. In(a), the solid and dashed lines
=2.75, in good agreement with the result obtained by direchave slopes of 2.0 and 2.2, respectively. The lineghjrare linear
measurement. fits with slope 2.0. The data points are shifted vertically to enhance
The assortativity is another interesting feature of the spanthe visibility. (c) The ratio of the largest value of edge B,y to
ning trees. The assortativity[21], which measures the de- vertex BC(b) of a vertex with degrek for the BA tree(+) and the
gree correlation of vertices directly connected by an edge, ispanning trees of the BA modek), NEURO(0), Internet AS(O),
defined byr=((jk)—{j)}k))/((k?—(k)?), wherej andk are  and PIN(A) networks.
the remaining degrees at the end of an edge and the angular
brackets indicate the average over all edges. We find that all Interestingly, in scale-free networks, we find that there are
spanning trees show dissortative or neutral behavior regardwo types in the shortcut length distributigsee Fig. 4. In
less of the assortativity of the original netwollsee Table)l  one distribution(type I), most shortcuts distribute near a
Thus, we can propose that it is a general characteristic of thRrge mean value, similar to the Gaussian distribution, which
spanning trees of scale-free networks. We need further studshows that the network is the longer-loop dominant structure.
to prove our conjecture. In the other distributiontype Il), the number of shortcuts
We find that the BC distribution of the spanning tree ismonotonically decreases as the length increases, which indi-
robust regardless of its original network in scale-free realcates that the network is tree like. Most of the networks
world and model networks. The vertex and edge BC distriincluding the BA model, coauthorship networks, and PIN
butions of the spanning trees follow a power law with thepelong to type I. On the other hand, Internet AS and the
robust exponentys=2.0 (see Fig. 3 and Table).I This is  adaptation model are type Il. We find that our classification
consistent with the numerical and analytical results for theexactly agrees with the grouping by exponent of the BC
growing scale-free tree modgll]. The same BC distribu-

tion for vertices and edges is the general feature of trees. In 02 r . @) 03¢ (b)
the mean-field picture, the largest BC of edges belonging to - d

a vertex gives a dominant contribution to the BC of the ver- _5\ oal * e o0z

tex[22]. For our obtained spanning trees, we verify numeri- S . . o1k

cally that the largest edge BC of a vertex almost equals the = . °, A

vertex BC for most of the verticgsee Fig. &)]. Dol L L L1 Ca4e)

The spanning trees show robust features, such as a scale- 2 4 6 81012141618 5 101520253035
free degree distribution, robust BC distribution, and dissor- 04 r © 08 r @
tative or neutral degree correlation. Here one can ask what is - 03t ® 06%
the role of shortcuts which are not included in the spanning _3\ o2l 0al
tree. To answer this question, we focus on the length of the I .
shortcuts on the spanning trees. The length of a shortcut =00 . 02 .

[ ]

between vertices andj is defined as the minimum number
of hops fromi to j on the spanning tree. The nonzero clus-
tering coefficient of the original networks can now be ex-
plained by short-length shortcuts. Obviously, shortcuts with  F|G. 4. The length distribution of shortcuts f@) the BA model
length 2 build triangles of vertices and hence increase then=2), (b) coauthorship network of neuroscience) Internet AS,
clustering coefficient. All networks with nonvanishing clus- and (d) adaptation model with POvertices.ny(d) and n, are the
tering coefficient have a significant amount of shortcuts withnumber of shortcuts with lengtti and total number of shortcuts,
length 2(see Fig. 4. respectively.

0 o—1—1-a 49449
23 456789 2345678910
d d
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distribution[11]. The networks belonging to type | or type I
show vertex BC distributions with an exponent of 2.2 or 2.0,
respectively. Gotet al. [11] characterized the networks with

a BC exponent of 2.0 as the linear mass-distance relation,
which shows that the shortest paths of the networks are simi-
lar to trees. Our result also supports the treelike structures of
the type-Il networks and gives an intuitive explanation of the
reason why the BC exponents of the type-Il networks are as
same as those of the scale-free trees. Because there exist
mostly short-length shortcuts in the type-Il networks with

0

monotonically fast-decaying shortcut length distributions, © ": '

the structure of the original networks is not significantly dif- o

ferent from their spanning trees. Therefore, the BC expo- 102

nents of the type-Il networks are unchanged at 2.0 of their §10'3 3

spanning trees. 104k

Finally, we also study the spanning tree of homogeneous w05k b\\

networks, the Erdds-RényER) random networkf27] and 10 )

the Watts-Strogat?Ws) small-world network{15] (see Fig. 10° 10

5 and Table ). The sparse versions of networks, which have k

10* vertices and average degree 4, show no scale-free behav-

ior. They have no hub because the degree of the Spannirzz% FIG. 5. Degree distribution ofa) the spanning trees of the

arse homogeneous networks witl ¢8rtices and average degree

tree has to be smaller than that of the original network. Bu and(b) their original networks. For dense homogeneous networks

interestingly, if the network gets much densgr by mcreas_,ln ith 10* vertices and average degree 100, the degree distributions
the averqge_degree to 100, Scalg-free behavior appears in t (c) the spanning tree andl) their original networks are drawn.
degree distribution of the spanning tree upkta (k). HOW-  The two popular homogeneous model networks, the ER network
ever, it does not share the properties with the trees from, solid line) and the WS network, with the rewiring probability
scale-free networks such as the BC exporj@si. p=1.0(O, dashed ling are tested.

In summary, we have studied the properties of the span-

ning trees with maximum total edge betweenness centralitfy,m the BC exponentglL1]. We also find that the scale-free
We find that a complex network can be decomposed intehayior can be found in homogeneous networks. We note
scale-free trees and addition shortcuts on it. In various scalgpat the property of the spanning tree generated from other

free real-world and model networks, the scale-free spanning,cthods was independently studied by other grd@es3q.
trees represent the communication kernels on networks. The

scale-free spanning trees show robust characteristics in the The authors are grateful to Byungnam Kahng, Kwang-II
degree correlation and the betweenness centrality distribuGoh, and Mark Newman for fruitful discussions and support-
tion. The remaining shortcuts are responsible for detailedng the real-world network data. This work was supported by
characteristics such as the clustering property and the BGrant No. R14-2002-059-01002-0 from the KOSEF-ABRL
distribution of scale-free networks. The distribution of the program and by Korean Systems Biology Research Grant
shortcut length clearly distinguishes the scale-free networkslo. M10309020000-03B5002-00000 from the Ministry of
into two types, which coincides with the classes determinedscience and Technology.
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