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Depinning of an anisotropic interface in random media: The tilt effect
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We study the tilt dependence of the pinning-depinning transition for an interface described by the anisotropic
quenched Kardar-Parisi-Zhang equation it 2 dimensions, where the two signs of the nonlinear terms are
different from each other. When the substrate is tiltedvbglong the positive sign direction, the critical force
F.(m) depends omasF.(m)—F(0)~ —|m|**®). The interface velocity near the critical force follows the
scaling formp ~ |f|¥ . (m?/|f|?* %) with §=0.9(1) and$=0.2(1), wheref=F —F.(0) andF is the driving
force.

PACS numbe(s): 05.40-a, 68.35.Fx, 64.60.Ht

The pinning-depinningPD) transition from a pinned to a [11,12, displaying the PD transition different from the QEW
moving state is of interest due to its relevance to many physiuniversality behaviof13]. It was proposed that the models
cal systems. Typical examples include interface growth irare described by the Kardar-Parisi-Zhang equation with
porous(disorderedl media under external pressutg2], dy-  quenched noiséQKPZ2) [14], where
namics of a domain wall under external fi¢@+-5|, dynam-
ics of a charge density wave under external fi@d’], and N
vortex motion in superconductors under external current K[h]=vV2h+ =(Vh)2 3
[8,9]. In the PD transition, there exists a critical valég, of 2
the external driving forcd=, such that forF <F. the inter-

face (or charge, or vortexis pinned by the disorder, while 1o nopjinear term comes from the anisotropic nature of

for F>F, it moves forward with a constant velocity,  isordered medium, thus nonvanishing at the critical force
leading to a transition acro$s.. The velocityv plays the F. as shown by Tangt al. [15] in the context of vortex

role of the order parameter and typically behaves as dynamics. When effective pinning force in the random im-

v~ (F—F,)" (1) Purity takes the form £+ 52A) 2R (1+5%)?R where s
o =o,h is the local slope and}? andAY? are the amplitudes
with the velocity exponend. of random forces in thé andx directions, respectively, the

The interface dynamics in disordered media may be denonlinear term is derived l_)y expanding the random force in
scribed via the Langevin-type continuum equation for thepower of the slopes, leading tok>(A,—A,). Therefore,

interface positiorh(x,t), when Ap>A,(AR<A,) i.e., when the interface is driven
along the hardeasy direction,\ is positive(negative, and
ah(x,t)=K[h]+F+n(x,h). (2)  when the medium is isotropid,=A,, the nonlinear term

] , ] ) vanishes. It has been shoWi6,17) that the interface dynam-
The first term on the right-hand side of EQ) describes the .5 of the QKPZ equation depends on the sign.ofn con-
configuration dependent force, the second is the externglsst to the thermal case where the sign is irreleyaat.
driving force, and the last, the quenched random noise, inde- The critical behavior of the PD transition for the QKPZ
pendent of time, describes the fluctuating force due to raNaquation has been thoroughly studied in 1 dimensions.
domness or impurities in the medium. The random noise igq )\ >0, the PD transition is continuous, and the interface
assumed to have the ptopertles{,’n(x,h)>=0 and 5t F_ is characterized in terms of the directed percolation
(m(x.h)7(x",h"))=2D &%(x—=x")5(h—h"), where the an-  pp)” cluster [18] spanning in the perpendicular-to-the-
gular brackets represent the average over different reallzqg-rowth directionf11,19. In this case, the effective nonlinear
tir?ns antljd islthe substrate dimer;lsignhWh&iﬁh]: gVZdh, gLoefficient diverges as-(F-F,) ¢ asF—F_, and the
the resulting linear equation is called the quenched Edwards:..... N
Wilkinson equationlQEW) [10]. Fritical force F. depends on the substrate-tiftas

Recently, a couple of stochastic models mimicking the

interface dynamics in disordered media have been introduced Fo(m)—F(0)~ —|m|Y(1-a), (4
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wherev and « are the correlation length and the roughness 0.6 - ; 3
exponent, respectively. These exponents are related to one g
another ag15] 05y

d=2v(l—a)—0. (5) 0.4 |
For A <0, the surface & forms a facet with a characteris- > 03¢

tic slopes, . The effective nonlinear coefficient is insensitive

to F. When the substrate-tilin is smaller thars., the PD oz r

transition is discontinuous, arit}, is independent afn, while 01 |

the transition is continuous arfé, increases wittm for m

>s.. The discontinuous transition is caused by the presence 0

of a critical pinning force due to both the negative nonlinear 0 02 04 FO'G 08 1

term and random noise, which is localized. Once this pinning

force is overcome by increasing external fofgehe surface FIG. 1. The interface velocity as a function Bffor variousm.

moves forward abruptly, yielding the velocity jump Rt . The curves correspond to the casessf0.0, 0.2, 0.4, 0.6, 0.8, and
The amount of the velocity jump decreases with increasind.9, from right to left.
m, and vanishes at the characteristic tii,=s.. For m
>m,, the velocity increases continuously from zero, and the/Ve measured the growth velocity as a function of the exter-
PD transition is continuous. Accordingly, the characteristichal force F for several values of substrate-titt, which is
substrate-tilim, is a multicritical point[16,17. shown in Fig. 1. Fom=0, we found thaty=0.9(1) as in
Since the sign of the nonlinear term is relevant in theRef.[16]. But for nonzerom, the exponen®(m) is generi-
quenched case, it would be interesting to consider the case 6flly 1, different from itsm=0 value[15]. This picture can
the anisotropic QKPZ equation in+21 dimensions, where be seen in Fig. 1, which shows straight lines for lange
the signs of the nonlinear terms are alternative. Thus, we The critical forceF, is estimated as the maximum value
consider of F for which all samples of 10 are pinned until large Monte
Carlo steps, typically TQ\t. In this way, we findF(0)
~0.51(1). This value is slightly larger than that obtained by
extrapolating the velocity curves0.50. Also, we estimated
the critical forceF.(m) as a function of the substrate-titt.
+F+7n(xy,h), 6)  The critical forceF.(m) decreases with increasing substrate-

. . L . tilt mwith the exponent 1(1— «)~1.9(1) as shown in Fig.
where\,>0 and\,<0. The anisotropic case is in particular 2 P (1-a) (1) g

interesting due to its application to the vortex motion in dis-
ordered systeni9] and the adatom motion on step edge inIinear term. To determine the exponehtndependently, we

epitaxial surfacg19). It ha; been showil9] that for the ssume the scaling form for the interface veloeify,m) as
thermal case, the two nonlinear terms cancel each other 2?13 15

fectively, thereby the anisotropic KPZ equation is reduced t
the linear equation, the EW equation. For the quenched case, 2

; e o . m
however, the interface dynamics in each direction are differ- U~|f|9\p+< ) ) (7)
ent from each other and the surface morphology is aniso- likass
tropic: the surface is gently sloping in the positive-sign di- )
rection (x-direction, and is of the shape of a mountain rangeHere, f=F—F¢(0) and the subscriptt(—) denotes the
with steep slope in the negative-sign directigndirection).  Positive (negative f branch. To be consistent with Eqd)
In spite of the facet shape in the negative-sign direction, thé&nd (4) and the fact thaty(m)=1 for m#0, the scaling
PD transition is continuous due to the critical behavior in thefunction should behave as
positive-sign direction. Consequently, one may expect that
the critical force and the effective nonlinear coefficient along
the positive-sign direction can be described by the scaling
theory introduced foh>0 in 1+ 1 dimensions. In this brief e
report, we show, from extensive numerical simulations, that € )
this is indeed the case and determine the scaling expogents ~5 01t P
and v(1— @) independently. i B

Direct numerical integration has been carried out using =

standard discretization techniquég0,21], in which we TN %
choose the parameteng,= »y=1, A\,=—\,=1, and a tem-
poral incrementAt=0.01. The noise is discretized as 0.01 .-~
7n(x,y,[h]), where[---] means the integer part, ang is
uniformly distributed in[ —a/2,a/2] with a=(10)?. In or- 0.1 1
der to consider the tilt-dependence, we tilted the substrate as m
h(x,y,0)=mxalong the positive-sign direction, and used the  FIG. 2. Log-log plot ofF.(0)—F.(m) vs m. The dashed line
helicoidal boundary conditiom(L +x,y,t) =h(x,y,t)+Lm. has slope 1.9, drawn for the eye.

A Y
dth=vedZh+ vy a7h+ ?X(ﬂxh)z‘f' ?"(ayh)2

The PD transition is continuous due to the positive non-

1




PRE 62 BRIEF REPORTS 2957

1000 . . . . 100
100 | A
‘,t" — 10 ¢
g b4
= 1 ” s
= o
BN
£
I mmu"" >
01} 1 0.1 i..»-:.;;,i?"'
0.01 0.1 1 1 100 1000 0.1 1 10 100
m?/|f[®+ § f/m2®1cq
FIG. 3. Data collapse for the interface velocity using Eg. FIG. 4. Data collapse for the interface velocity using EtD)

with the exponent®=0.9(1) and$=0.2(1). Thedashed lines are with #=0.9(1) and$=0.2(1). Thedotted(dashedl line has slope
drawn for the approximate form of the scaling functions, E§5. 0.9 (1.0), drawn for the eye.
and(9).

P, (x—)~x(0F ) with

¥, (0")=constant, D (x—0)~x",

and for some positive constaxg,

¥ _(%)=0, ®(—¢o)=0,

W'’ (xy)=constant,
@’ (—cpy)=constant,
where the prime denotes the derivative with respeat iWe
find that the velocity data(F,m) near the transition can be i ) )
collapsed onto a single curve consistent with the scalingVnere et+he positive constart, is related tox, via co
form. The best collapse is achieved wia(0)~0.50 and =Xo ' ). With this form, the data can be described by a
the exponent®~0.9(1) and$~0.2(1), asshown in Fig. 3.  single scaling functio(x). The scaling plot using the scal-

From a simple fit to the data, we obtain an approximatdng form Eq.(10) is shown in Fig. 4. There, we have shifted

functional form of the scaling functio® .. (x) as the argumenk of the scaling function(x) by ¢, to make
the argument positive. The slope of the log-log plot of the
P, (x)~A(x+B)#(0+ %) (8)  scaling function shows a crossover from 0.9 to 1.0 with in-
creasing the substrate-tith, which confirms the fact that
and 6(m)=1 for m#0.
W (x)~AXIO D _C), ©) In summary, we have investigated the critical behaviors

of the tilted anisotropic QKPZ equation at the PD transition.
with constantsA~0.571), B~2.1(1), and C=x(0+4) The PD transition is continuous when it is tilted along the
~1.5(1).Here we assume,thaiu(x) is :emalytic ale: 0.In  Positive sign direction. It is shown that the data can be col-
Fig. 3, we also plot Eq¥8) and (9) with dashed lines. The 'aPsed onto asingle curve, with the exponefts0.9(1) and
exponents thus obtained satisfy the scaling relation, (8. ¢»=0.2(1). Thefunctional form of the scaling function is

within the errors. also numerically determined. We have measured, indepen-
Alternatively, one may put the scaling form as dently, the exponent which describes the variatiok gWvith
respect tam, and confirmed their consistency.
v ~m2o 0+ d) P _ , (10) This work was supported in part by the Korean Research
m2(¢+4) Foundation(1999-015-D10070

[1] M.A. Rubio, C.A. Edwards, A. Dougherty, and J.P. Gollub, [5] O. Narayan and D.S. Fisher, Phys. Rev4& 7030(1993.
Phys. Rev. Lett63, 1685(1989; D. Kessler, H. Levine, and  [6] G. Griner, Rev. Mod. Phys50, 1129(1988.
Y. Tu, Phys. Rev. A3, 4551(199)). [7] H. Fukuyama, and P.A. Lee, Phys. Rev.1B, 535 (1978;
[2] M. Kardar, Phys. Rep301, 85 (1998. P.A. Lee, and T.M. Riceibid. 19, 3970(1979.
[3] R. Bruinsma and G. Aeppli, Phys. Rev. Léi2, 1547(1984). [8] D. Ertas and M. Kardar, Phys. Rev. Le#3, 1703 (1994);
[4] R. Bausch, V. Dohm, H.K. Janssen, and R.K.P. Zia, Phys. Phys. Rev. B53, 3520(1996.
Rev. Lett.47, 1837(1981). [9] T. Hwa, Phys. Rev. Lett69, 1552(1992; M.P.A. Fisher and



2958 BRIEF REPORTS PRE 62

G. Grinstein,ibid. 69, 2322(1992. [16] H. Jeong, B. Kahng, and D. Kim, Phys. Rev. Lét¥, 5094
[10] S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser. (1996.

A 381, 17(1982. [17] H. Jeong, B. Kahng, and D. Kim, Phys. Rev.39, 1570
[11] S.V. Buldyrev, A.-L. Barabsi, F. Caserta, S. Havlin, H.E. (1999.

Stanley, and T. Viscek, Phys. Rev.45, R8313(1992. [18] G. Deutscher, R. Zallen, and J. Adlé&ercolation Structures
[12] L.-H. Tang and H. Leschhorn, Phys. Rev45s, R8309(1992. and Processes Ann. Isr. Phys. SodHilger, Bristol, 1983.
[13] L.A.N. Amaral, A.-L. Barabai, and H.E. Stanley, Phys. Rev. [19] D.E. Wolf, Phys. Rev. Lett67, 1783 (1991); J. Villain, J.

Lett. 73, 62 (19949. Phys. 11, 19 (199).

[14] M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. L&, 889 [20] Z. Csah&, K. Honda, and T. Vicsek, J. Phys. 26, L171

(1986. (1993.

[15] L.-H. Tang, M. Kardar, and D. Dhar, Phys. Rev. La#, 920 [21] H. Leschhorn and L.-H. Tang, Phys. Rev4B, 1238(1994);
(1995. H. Leschhornjbid. 54, 1313(1996.



