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Depinning of an anisotropic interface in random media: The tilt effect
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We study the tilt dependence of the pinning-depinning transition for an interface described by the anisotropic
quenched Kardar-Parisi-Zhang equation in 211 dimensions, where the two signs of the nonlinear terms are
different from each other. When the substrate is tilted bym along the positive sign direction, the critical force
Fc(m) depends onm asFc(m)2Fc(0);2umu1.9(1). The interface velocityv near the critical force follows the
scaling formv;u f uuC6(m2/u f uu1f) with u50.9(1) andf50.2(1), wheref [F2Fc(0) andF is the driving
force.

PACS number~s!: 05.40.2a, 68.35.Fx, 64.60.Ht
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The pinning-depinning~PD! transition from a pinned to a
moving state is of interest due to its relevance to many ph
cal systems. Typical examples include interface growth
porous~disordered! media under external pressure@1,2#, dy-
namics of a domain wall under external field@3–5#, dynam-
ics of a charge density wave under external field@6,7#, and
vortex motion in superconductors under external curr
@8,9#. In the PD transition, there exists a critical value,Fc , of
the external driving forceF, such that forF,Fc the inter-
face ~or charge, or vortex! is pinned by the disorder, while
for F.Fc , it moves forward with a constant velocityv,
leading to a transition acrossFc . The velocityv plays the
role of the order parameter and typically behaves as

v;~F2Fc!
u, ~1!

with the velocity exponentu.
The interface dynamics in disordered media may be

scribed via the Langevin-type continuum equation for
interface positionh(x,t),

] th~x,t !5K@h#1F1h~x,h!. ~2!

The first term on the right-hand side of Eq.~2! describes the
configuration dependent force, the second is the exte
driving force, and the last, the quenched random noise, in
pendent of time, describes the fluctuating force due to r
domness or impurities in the medium. The random nois
assumed to have the properties,̂h(x,h)&50 and
^h(x,h)h(x8,h8)&52Ddd(x2x8)d(h2h8), where the an-
gular brackets represent the average over different rea
tions andd is the substrate dimension. WhenK@h#5n¹2h,
the resulting linear equation is called the quenched Edwa
Wilkinson equation~QEW! @10#.

Recently, a couple of stochastic models mimicking t
interface dynamics in disordered media have been introdu
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@11,12#, displaying the PD transition different from the QEW
universality behavior@13#. It was proposed that the mode
are described by the Kardar-Parisi-Zhang equation w
quenched noise~QKPZ! @14#, where

K@h#5n¹2h1
l

2
~¹h!2. ~3!

The nonlinear term comes from the anisotropic nature
disordered medium, thus nonvanishing at the critical fo
Fc as shown by Tanget al. @15# in the context of vortex
dynamics. When effective pinning force in the random im
purity takes the form (Dh1s2Dx)

2/3/(11s2)2/3, where s
[]xh is the local slope andDh

1/2 andDx
1/2 are the amplitudes

of random forces in theh andx directions, respectively, the
nonlinear term is derived by expanding the random force
power of the slopes, leading tol}(Dh2Dx). Therefore,
when Dh.Dx(Dh,Dx) i.e., when the interface is driven
along the hard~easy! direction,l is positive~negative!, and
when the medium is isotropic,Dh5Dx , the nonlinear term
vanishes. It has been shown@16,17# that the interface dynam
ics of the QKPZ equation depends on the sign ofl, in con-
trast to the thermal case where the sign is irrelevant@14#.

The critical behavior of the PD transition for the QKP
equation has been thoroughly studied in 111 dimensions.
For l.0, the PD transition is continuous, and the interfa
at Fc is characterized in terms of the directed percolat
~DP! cluster @18# spanning in the perpendicular-to-the
growth direction@11,12#. In this case, the effective nonlinea
coefficient diverges as;(F2Fc)

2f as F→Fc
1 , and the

critical forceFc depends on the substrate-tiltm as

Fc~m!2Fc~0!;2umu1/n(12a), ~4!
2955 ©2000 The American Physical Society
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wheren anda are the correlation length and the roughne
exponent, respectively. These exponents are related to
another as@15#

f52n~12a!2u. ~5!

For l,0, the surface atFc forms a facet with a characteris
tic slopesc . The effective nonlinear coefficient is insensitiv
to F. When the substrate-tiltm is smaller thansc , the PD
transition is discontinuous, andFc is independent ofm, while
the transition is continuous andFc increases withm for m
.sc . The discontinuous transition is caused by the prese
of a critical pinning force due to both the negative nonline
term and random noise, which is localized. Once this pinn
force is overcome by increasing external forceF, the surface
moves forward abruptly, yielding the velocity jump atFc .
The amount of the velocity jump decreases with increas
m, and vanishes at the characteristic tiltmc5sc . For m
.mc , the velocity increases continuously from zero, and
PD transition is continuous. Accordingly, the characteris
substrate-tiltmc is a multicritical point@16,17#.

Since the sign of the nonlinear term is relevant in t
quenched case, it would be interesting to consider the cas
the anisotropic QKPZ equation in 211 dimensions, where
the signs of the nonlinear terms are alternative. Thus,
consider

] th5nx]x
2h1ny]y

2h1
lx

2
~]xh!21

ly

2
~]yh!2

1F1h~x,y,h!, ~6!

wherelx.0 andly,0. The anisotropic case is in particula
interesting due to its application to the vortex motion in d
ordered system@9# and the adatom motion on step edge
epitaxial surface@19#. It has been shown@19# that for the
thermal case, the two nonlinear terms cancel each othe
fectively, thereby the anisotropic KPZ equation is reduced
the linear equation, the EW equation. For the quenched c
however, the interface dynamics in each direction are dif
ent from each other and the surface morphology is an
tropic: the surface is gently sloping in the positive-sign
rection (x-direction!, and is of the shape of a mountain ran
with steep slope in the negative-sign direction (y-direction!.
In spite of the facet shape in the negative-sign direction,
PD transition is continuous due to the critical behavior in
positive-sign direction. Consequently, one may expect
the critical force and the effective nonlinear coefficient alo
the positive-sign direction can be described by the sca
theory introduced forl.0 in 111 dimensions. In this brief
report, we show, from extensive numerical simulations, t
this is indeed the case and determine the scaling exponenf
andn(12a) independently.

Direct numerical integration has been carried out us
standard discretization techniques@20,21#, in which we
choose the parameters,nx5ny51, lx52ly51, and a tem-
poral increment Dt50.01. The noise is discretized a
h(x,y,@h#), where @•••# means the integer part, andh is
uniformly distributed in@2a/2,a/2# with a5(10)2/3. In or-
der to consider the tilt-dependence, we tilted the substrat
h(x,y,0)5mx along the positive-sign direction, and used t
helicoidal boundary condition,h(L1x,y,t)5h(x,y,t)1Lm.
s
ne

ce
r
g

g

e
c

of

e

-

ef-
o
se,
r-
o-
-

e
e
at

g

t

g

as

We measured the growth velocity as a function of the ex
nal force F for several values of substrate-tiltm, which is
shown in Fig. 1. Form50, we found thatu50.9(1) as in
Ref. @16#. But for nonzerom, the exponentu(m) is generi-
cally 1, different from itsm50 value@15#. This picture can
be seen in Fig. 1, which shows straight lines for largem.

The critical forceFc is estimated as the maximum valu
of F for which all samples of 10 are pinned until large Mon
Carlo steps, typically 105Dt. In this way, we findFc(0)
'0.51(1). This value is slightly larger than that obtained b
extrapolating the velocity curve,'0.50. Also, we estimated
the critical forceFc(m) as a function of the substrate-tiltm.
The critical forceFc(m) decreases with increasing substra
tilt m with the exponent 1/n(12a)'1.9(1) as shown in Fig.
2.

The PD transition is continuous due to the positive no
linear term. To determine the exponentf independently, we
assume the scaling form for the interface velocityv(F,m) as
@13,15#

v;u f uuC6S m2

u f uu1fD . ~7!

Here, f [F2Fc(0) and the subscript1(2) denotes the
positive ~negative! f branch. To be consistent with Eqs.~1!
and ~4! and the fact thatu(m)51 for mÞ0, the scaling
function should behave as

FIG. 1. The interface velocity as a function ofF for variousm.
The curves correspond to the cases ofm50.0, 0.2, 0.4, 0.6, 0.8, and
0.9, from right to left.

FIG. 2. Log-log plot ofFc(0)2Fc(m) vs m. The dashed line
has slope 1.9, drawn for the eye.
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C6~x→`!;xu/(u1f),

C1~01!5constant,

and for some positive constantx0,

C2~x0!50,

C28 ~x0!5constant,

where the prime denotes the derivative with respect tox. We
find that the velocity datav(F,m) near the transition can b
collapsed onto a single curve consistent with the sca
form. The best collapse is achieved withFc(0)'0.50 and
the exponentsu'0.9(1) andf'0.2(1), asshown in Fig. 3.
From a simple fit to the data, we obtain an approxim
functional form of the scaling functionC6(x) as

C1~x!'A~x1B!u/(u1f), ~8!

and

C2~x!'A~xu/(u1f)2C!, ~9!

with constantsA'0.57(1), B'2.1(1), and C5x0
u/(u1f)

'1.5(1).Here we assume thatC1(x) is analytic atx50. In
Fig. 3, we also plot Eqs.~8! and ~9! with dashed lines. The
exponents thus obtained satisfy the scaling relation, Eq.~5!,
within the errors.

Alternatively, one may put the scaling form as

v;m2u/(u1f)FS f

m2/(u1f)D , ~10!

FIG. 3. Data collapse for the interface velocity using Eq.~7!
with the exponentsu50.9(1) andf50.2(1). Thedashed lines are
drawn for the approximate form of the scaling functions, Eqs.~8!
and ~9!.
b,

ys
g
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with

F~x→`!;xu,

F~2c0!50,

F8~2c0!5constant,

where the positive constantc0 is related to x0 via c0

5x0
21/(u1f) . With this form, the data can be described by

single scaling functionF(x). The scaling plot using the sca
ing form Eq.~10! is shown in Fig. 4. There, we have shifte
the argumentx of the scaling functionF(x) by c0 to make
the argument positive. The slope of the log-log plot of t
scaling function shows a crossover from 0.9 to 1.0 with
creasing the substrate-tiltm, which confirms the fact tha
u(m)51 for mÞ0.

In summary, we have investigated the critical behavi
of the tilted anisotropic QKPZ equation at the PD transitio
The PD transition is continuous when it is tilted along t
positive sign direction. It is shown that the data can be c
lapsed onto a single curve, with the exponentsu50.9(1) and
f50.2(1). Thefunctional form of the scaling function is
also numerically determined. We have measured, indep
dently, the exponent which describes the variation ofFc with
respect tom, and confirmed their consistency.

This work was supported in part by the Korean Resea
Foundation~1999-015-D10070!.

FIG. 4. Data collapse for the interface velocity using Eq.~10!
with u50.9(1) andf50.2(1). Thedotted~dashed! line has slope
0.9 ~1.0!, drawn for the eye.
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