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Numerical test of the damping time of layer-by-layer growth on stochastic models
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We perform Monte Carlo simulations on stochastic models such as the Wolf-\Viiildir) model and the
Family model in a modified version to measure the mean separ4tibetween islands in a submonolayer
regime and the damping tinteof layer-by-layer growth oscillations in one dimension. The stochastic models
are modified, allowing for diffusion within interval upon deposition. It is found numerically that the mean
separation and the damping time depend on the diffusion intepVehding to the fact that the damping time
is related to the mean separationtas/? for the WV model and ~ /2 for the Family model. The numerical
results are in excellent agreement with recent theoretical predic{i®863-651X%99)06505-§

PACS numbes): 68.35.Ct, 81.15-z

Recently the problem of surface growth by molecularevolve, the density of atomic steps oscillates, which is a hall-
beam epitaxyYMBE) has been attractive in statistical physics mark of layer-by-layer growth. The oscillating behavior can
[1]. From the point of view of statistical physics, it is intrigu- be monitored through reflection high-energy electron diffrac-
ing how various stochastic processes involving many atomsjon (RHEED) intensity in the laboratory, which is useful for
such as shot noise, diffusion, and nucleation, are described imeasuring film thickness easily. Layer-by-layer growth is
terms of scaling structures. These cooperative phenomenmportant for the fabrication of microelectronic devices. It is
depend crucially on the ratio between the diffusion constanknown that the oscillation persists perfectly when system

D and the deposition rate. The deposition rate is defined as sjze is smaller than the layer-coherence lengtisuch that

the number of atoms landing on a surface per unit area a%r two sites within the coherence lengih they grow co-
unit time. Atoms deposited on a surface diffuse until theyherently and beyond which they are out of phikgl. The

meet one another to forr_n dimers which th_en grow Into 1S-;oherence length is related to the separation between island
lands of monoatomic height. The mean distance of nucle-

. . - > _ /AI(4—d) ;
ation events, corresponding to the mean separation betwe@ﬁq/ 4 - The coherence length is much larger than
other length scales such as the island separatioor the

islands, is determined by the ratio between the diffusion con= 7 , 1/(2+d) ;o
stantD and the deposition raté as[2—§] characteristic Iength/0~_(D/_|:) , where/y is formed
by a dimensional combination @ and F, meaning that if
/~(DIF)?. (1) system size is smaller thafy,, it can accommodate at most
one island. When system size is larger thgrthe oscillation
The exponent depends on the diffusion process of adatomsof step density is damped due to various types of fluctua-
and island shape. It is also a function of the critical islandtions. It is recently found13] that there exists a characteris-
size i*, defined by the sizé* +1 of the smallest island tic time, beyond which the damped oscillation disappears.
which is stable enough that it never decays before capturinghe characteristic time is scaled as
the next adatom. When only adatoms can move and desorp-
tion can be neglected, the exponentan be predicted using T~(DIF)?, %)
the kinetic theory a$6]
meaning the critical time for the transition from layer-by-
_ @) layer growth to kinetic roughening growth.
Y 2i* +d+d;” In the kinetic roughening growth, when the number of
adatoms is conserved, surface growth may be described by
However, recently the formula was corrected for the case othe equatiorf11,13-15,
d=1 andi*=2 as[9]

Pk
|

dth=—=V-j+7, )
i*
Y=o g3 (3)  whereh is surface heightj is adatom current, angy(x,t)
! denotes shot noise satisfyingy(x,t))=0 and having the

. . correlation
As the number of adatoms increases in the submonolayer,

islands grow in size and coalesce, forming bigger islands, (060 (X' 1))~ 8 (x—x") S(t—t"), 6)

and eventually cover a monolayer. If adatoms are allowed to

diffuse to stable sites such as kink sites or step edges befoigith substrate dimensiod. When adatom current is driven
other adatoms are deposited and if interlayer diffusion is nopy the gradient of surface curvature and square of surface tilt
inhibited by the Ehrlich-Schwoebel barrigh0,11], a smooth  with coefficientsK and\ [11,13—15,

surface with a minimum of defects is grown. In this case, the

surface exhibits a layer-by-layer growfii2]. As islands j=V[KV2h—\(Vh)?]. (7)
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The continuum equation for surface growth is written as Eoi r— . . . . . .
N
dh=—KV*h+AV2(Vh)2+ (x,1), (8) 3T g, T
@ .
which, called the conserved Kardar-Parisi-Zhang (CKPz) *°[ a i
equation, has been discussed in the context of MBE growth. | L 4
For the CKPZ universality class, it was derived that the ex- pop e
ponentsé for the damping time is related tp for the island —asr e 7
separatiorf13] as <L - 5 i
5§ 4d @ L o |
ST a—d o L
’y 4_ d 6 1 1 | 1 1 [ - -I!
The derivation was based on the dimensional analysis on the 2 ’ > 1;1 r 3 ’ >3 6

continuum equation. The formula was checked numerically
in one dimension by performing the coarse graining Monte FIG. 1. Double logarithmic plot of the density of islandsver-

Carlo simulationg13]. sus the diffusion length for the Wolf-Villain model in one dimen-
For the surface growth driven by downhill current with sion. The data are obtained from the system kizel000 at differ-
coefficientw, ent coverages, 0.3¢), 0.4 (+), and 0.5 (J) from the bottom,
and are averaged over 1000 runs. The dotted line with slope
j=—vVh, (100  —0.95is a guideline to the eyes.

the continuum equation is written as 1
2 Y 2
sh=vV2h+ g(x,1), (11 WAL <L 2 (=t > 13
which is called the Edwards-WilkinsofEW) equation[16].
In this case, adatoms tend to move in a downward directiorﬁ:e density of istandp is related to the mean separatidras
on the surface, which is realized by exchanging a mobile ~/Lin one dimension. and the damoed oscillation in the
atom with an adatom at a step edge as observed in homoef- * ' P

taxial growth on I¢111) [17]. In this case, the exponestior step density occurs on the surface fluctuation width in the
the damping time is relatea t9 [13] as ' same way. In our simulations, we used the noise reduction

method with the noise reduction paramete+5 to get bet-

S 2d ter data. However, we did not vary the parametein any

> 7—a (12 case, so that the noise reduction parameter does not play the
role of control parameter as considered in RE24,22. As

which was also derived based on the dimensional analysis o?h?"é’g‘s in Fig. 1, the density of islands behaves s
the continuum equation, Eq11). However, successful nu- ~ ~ for large Va|l_JeS of, suggesting that the exponent
merical confirmation of Eq(12) has not been reported yet. ¥=0.48. The numerical result is close to the theoretical re-
Our preliminary numerical result for MBE growth with Sultp~r~*, which is obtained as follows. If we divide the
downhill current does not fit well to Eq12), requiring a  System into the small cells with size 2 1, and a particle is
numerical check of Eqg9) and (12) on stochastic models deposited on one of the cells randomly, then one island
belonging to the CFKPZ and EW universalities, respectivelyWould be formed on each cell, and the separation of islands
In this report, we perform Monte Carlo simulations on thein the system varies as~r for larger. Thusp~r~*. How-

stochastic models, the Wolf-VillaitwV) model [18] and  €Vver, the boundary between cells is virtual and could overlap
the Family mode[19] with some modifications in their dy- N our simulations, but the correction due to fluctuation of the

ith F=2ihi/L with varying diffusion lengthr. Note that

namic rules to check Eq$9) and (12). boundaries would be of higher order. Thus the density of
Let us first consider the modified WV model, of which the islands would behave gs~r~* up to leading order, ang
dynamic rule is defined as follows. First, a site, say itthe ~ ~1/2. We also count the number of nucleation events by

site, is selected randomly on a one-dimensional flat substraifnoring monomers, and the result is the same as Fig. 1.
with system size.. Then we consider a subset of the system,Next, the surface fluctuation widt exhibits a damped
composed of 2+ 1 sites, the randomly selected site, and itsoscillation as shown in Fig.(8). The data for different dif-

2r neighboring sites on its right and left sides, respectivelyfusion lengths are well collapsed, when time is rescaled as
within distancer. Among the 2 +1 sites, the surface is ad- t/t with T~r*? as shown in Fig. @). The rescaled time
vanced at the site offering the largest binding, that is, thesuggestsy=2/3. Therefore, the ratio of the two exponents
most occupied neighbors. If there is more than one site ofand é is obtained asj/ y~4/3, which is consistent with the
fering the largest binding, then the site closest toitheone  theoretical prediction, Eq9) for d=1. At this stage, one
among them is taken and its height is increased by one. Themay wonder how the modified WV model we consider is
case ofr=1 is reduced to the original version of the WV related to the CKPZ equation, because the original WV
model. If the distance is regarded as diffusion length, then model is known as belonging to the EW universality class in
the diffusion constant would be related to the distanc®as the long time limit[23]. Thus, we measure the growth expo-
~r2. We measure the density of islands in the submonolayenent 8, defined byw?~t2#, from the data of the cage=8
regime and the surface fluctuation wid0], betweent=5000 and 20000 in Fig. 2. The growth exponent
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FIG. 2. Plot of the surface fluctuation width versus tima FIG. 3. Plot of the surface fluctuation widt? versus rescaled

double logarithmic scales for the caé® and rescaled time/r43 time t/r? in double logarithmic scales for the Family model. In the
for the case(b) in the Wolf-Villain model. The data are obtained Simulations, adatoms are allowed to run over humps for the @se
from system size=1000, and are averaged over 100 runs. Theand are not allowed to for the cad®. For both(a) and(b), various

diffusion lengthsr =8, 16, 24, and 32 were used from the top.  diffusion lengthsr=4, 8, 16, and 24 are used from the top. The
data are obtained from system size= 10°, and are averaged over

is measured as 2~0.621), which is close to the Ckpz 00 NS

value 2/3, rather than the EW value 1/2 or the vaiu@.73
for the original WV model without diffusion. between the two in the collapsing behavior, implying the
Next, we consider the modified Family model. In this assumption of the dephasing length within which the
case, we choose a site randomly, sayitiesite, on a one- layer difference is at most one, is valid. Therefore, we con-
dimensional substrate with system size and consider a clude that the theoretical prediction is correct for the stochas-
subset consisting of 1”2+ 1 sites as before. Among ther 2 tic models, the WV model and the Family model, belonging
+ 1 sites, the surface is advanced at the lowest site. If there 9 the CKPZ and EW universalities. However, the relevance
more than one site with the lowest height, the site closest t@f the theoretical prediction to MBE growth with downhill
the ith site is taken. The case of=1 is reduced to the cuyrrent is to be further investigated.
original version of the Family model. We vary the distance  |n summary, we have performed Monte Carlo simulations
and examine the density of islands and the damped oscillag the modified version of the Wolf-Villain model and the
ing behavior of the surface fluctuation width. The density ofamily model involving the diffusion lengthon one dimen-

islands in the submonolayer regime behaves as the case gf, \We measure the density of islangsn the submono-
the WV model. For the surface fluctuation width, the data arqayer regime and the damping tirfiefor the oscillation of

well collapsed even for small values ofwhen time is res- ; : e -
LT . : layer-by-layer growth with varying diffusion length. We ob-
2 -
,Ca'e‘?' ag/r® as sho~vvn |2n Fig. @), 'mp'}"”g that the damp tained numerically that the exponergind y describing the
ing time behaves as~r<. Thus the ratio between the expo- gamping time and the density of islands are related to each
nentsé andy is obtained ass/y~2 for the Family model,  her ass/y~4/3 for the Wolf-Villain model ands/ y~2

which is consistent with the theoretical prediction, EIR).  for the Family model. This result is in excellent agreement
We also check the case involving a hump on the way to thgyith recent theoretical predictions.

lowest site in the subset. In Fig(e3, we considered the case

that an adatom can run over the hump, and stay on the lowest One of the author$B.K.) would like to thank D.E. Wolf
site within the interval. In Fig. &), the adatom cannot run for helpful discussions. This work is supported in part by the
over the hump, and is allowed to move only in a descendingcOSEF(Grant No. 971-0207-025)2and in part by the Ko-
way or on the same height. We cannot find any differencaean Research Foundati¢Brant No. 98-015-D00090
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