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Abstract

Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in

silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We

construct a gene transcription network based on the microarray expression level. Links are added one by one in the

descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful

link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected

clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the

deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by

an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree

distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to

the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that

the lethal cluster has the largest mean degree.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Thousands of genes and their products in a given living organism are believed to function in a concerted
way that creates the mystery of life [1]. Such a cooperative functionality among genes can be visualized using a
graph where nodes denote genes and links represent activating or repressive effects on transcription [2,3].
Traditional methods in molecular biology are very limited to analyze such large-scale interactions among
thousands of genes; therefore it is difficult to obtain a global image of the gene functions. The recent advent of
the microarray assays has attracted sufficient attention from researchers, allowing them to decipher gene
interactions in a more efficient manner [4]. While the data obtained using microarray assays have not been yet
e front matter r 2005 Elsevier B.V. All rights reserved.
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sufficiently accumulated to thoroughly understand the entire genetic network and they are also susceptible to
errors in detecting the expression levels, they are potential candidates for a fundamental approach to
understanding large-scale gene complexes and can be used in many applications such as drug design and
toxicological research.

Since microarray technology has a significant impact on genomics study, many methods for pattern
interpretation have been developed, including the K-means clustering [5], the self-organizing map [6], the
hierarchical method [7], the relevance network method [8], etc. All these methods, however, contain tunable
thresholds, and the results obtained by these methods can be misleading on account of the thresholds
artificially chosen. While these methods are useful for clustering or classifying genes, they cannot provide any
information required to identify essential or lethal genes. Essential or lethal genes are the target genes for drug
designs because their deletion leads to an inviable mutant of a given organism.

In this paper, we propose a novel in silico method to identify the essential genes in a microarray dataset. Our
method is inspired by the combination of gene clustering and the close relationship between the lethality or
essentiality of genes and connectivity in a network. Once the genes are clustered by using a graph theory, and
then the cluster or module containing a high population of essential genes is identified by using the
relationship between the lethality and connectivity of the graph [9]. The identification of lethal genes by a
cluster or module proves to be comparatively more efficient in selecting essential genes than the approaches
based on individual genes. Our model does not contain any artificial parameter; therefore, the essential genes
can be identified in a self-organized manner. Moreover, we find that the genes belonging to the same module
share a common functionality. Thus, our method can also be used to identify the functionality of unknown
genes as well.

2. Formation of a giant cluster in a transcription network

A network is constructed from a microarray dataset, containing 287 single gene deletions of S.

cerevisiae mutant strains composed of 6316 genes [10]. The deletion dataset, which elucidates the genetic
relationships among perturbed transcriptome [11], is composed of two large, internally consistent, global
mRNA expression subsets. One subset provides mRNA expression levels in wild-type S. cerevisiae sampled
separately 63 times (the ‘control’ set) and the other subset provides individual measurements on the genomic
expression program of 287 single gene deletion mutant S. cerevisiae strains, which were grown under the same
cell culture conditions as wide-type yeast cells (the ‘perturbation’ set). Individual of the microarray data is the
ratio of the expression levels in the wild-type and perturbed sets for each gene. Thus, the data can be written in
terms of an N �M matrix with N ¼ 6316 and M ¼ 287, which is denoted as C, representing the expression
ratio of N genes for M different-deletion experiments. In other words, each element ci;j of the matrix C is the
logarithmic value to the base 10 of the ratio of the expression levels for the ith gene under the jth perturbation
[12].

To obtain the correlations among the transcriptional genes, we consider the Pearson correlation coefficient
ri;j between the expression ratio of genes i and j averaged over k different perturbations, which are defined as

ri;j �
hci;kcj;ki � hci;kihcj;kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhc2i;ki � hci;ki
2Þ hc2j;ki � hcj;ki

2
� �r , (1)

where h� � �i implies the average over k different-deletion experiments. As shown in Fig. 1, the distribution of
the correlations fri;jg is bell shaped in the range ½�1; 1�. We construct a network based on the obtained set of
the Pearson coefficients. Links are added one by one in the descending order of the Pearson coefficients. Let p

be the concentration of added links among NðN � 1Þ=2 possible pairs, that is, the ratio of the number of links
present in a given network to NðN � 1Þ=2. When p is small, the number of links added to the graph is small,
most nodes remain isolated, which form small-size components or modules. As p increases, either each cluster
grows in size or the number of clusters NðpÞ containing at least two genes increases. At a certain value of p,
denoted as pm, the number of clusters becomes maximum, as shown in Fig. 2, which is estimated to be
pm � 0:0002. Beyond the value of pm, the number of clusters decreases by the merging of two clusters;
however, the mean size of the cluster increases.
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Fig. 1. The distribution of the Pearson correlation coefficients.
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Fig. 2. Plot of the number of clusters NðpÞ as a function of the link density p.
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As p increases further, the mean size of each cluster increases by either attaching to an isolated node or by
merging with finite size clusters. At the percolation threshold pc, a giant cluster emerges. The scale-free (SF)
network appears when the link density increases further at ps � 0:0063, as shown in Fig. 3. The degree
distribution follows a power law PdðkÞ�k�0:9 with an exponential cutoff, which is a generic feature of the SF
network with the degree exponent go2. The degree exponent value g � 0:9 is close to the those obtained in
different systems [13,14], but smaller than the typical values occurring in many real world networks in the
range of 2ogp3. As the link density increases further beyond ps, the degree distribution ceases to follow the
power law.

To understand the biological implication of the SF network at ps, we investigate whether the degree in the
SF network is useful in detecting the lethal genes. In Fig. 4, we plot a fraction of the essential genes among the
genes with a degree larger than a certain degree k0. The fraction shows an increasing trend up to k0 � 250,
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Fig. 3. Plot of the degree distribution of the gene transcription network at various link densities, p ¼ 0:0003 ð&Þ, p ¼ 0:0016 ð�Þ,
p ¼ 0:0063 � ps ð	Þ, and p ¼ 0:0322 ð,Þ. At ps, the degree distribution follows a power law with an exponential cutoff. The dotted line

having a slope of �0:9 is drawn for guidance.
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Fig. 4. Plot of a fraction of the essential genes with a degree larger than k0 to the total number of genes as a function of k0.
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implying that the genes with larger degrees are more likely to be lethal for k0o250. However, the fraction falls
rapidly beyond the degree k0 � 250. Even in the case of k0 � 250, the fraction of the essential genes is
approximately 40%, which is less efficient than that in the case obtained from the yeast protein interaction
network, where the ratio of finding essential genes is as high as 62% for highly connected proteins. Thus, the
identification of the essential genes through degree distribution in the SF transcription network alone is
comparatively less efficient than that in the case obtained through degree distribution in the protein
interaction network.
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3. Identification of essential gene cluster

Here we introduce a new method to identify the essential genes from the microarray data, which is based on
the idea that the unit of selection is a group of genes with similar functionality instead of individual genes. The
selection method is as follows. Initially, N ¼ 6316 genes are present and they are not connected to each other,
as shown in Fig. 5A. At each time step, links are added one by one in the descending order of the Pearson
coefficient ri;j. Simultaneously, the number of clusters NðpÞ is measured, where the isolated nodes are not
counted as individual clusters. The link density p is defined as a fraction of the number of links added to all
possible pairs of nodes, NðN � 1Þ=2. As p increases, we identify pm where the number of clusters becomes
maximum, as defined before in Fig. 2. At this point, we identify each cluster and their members, as shown in
Fig. 5B. We also record the network configuration for further discussion. Following this, more links are added
until the link density reaches the density value of ps, where the network is scale-free in the degree distribution.
At ps, we measure the degree of each node, as indicated in Fig. 5C. Maintaining the degree of each node at ps,
we return to the network configuration recorded earlier at pm. We then calculate the average degree per node
degree
information

(A)

All N genes (nodes) are
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The number of clusters 
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Fig. 5. Schematic diagram of how to identify the lethal cluster of genes. (A) From the initial state with N isolated vertices at p ¼ 0, links

are added one by one in the descending order of the Pearson coefficients. (B) At p ¼ pm where the number of clusters becomes maximum,

each node recognizes the cluster to which it belongs. (C) At p ¼ ps where the network is scale-free in the degree distribution, the degree of

each node is measured. Maintaining the degree of each node measured in (C), we return to the network configuration in (B). We calculate

the mean degree per node in each cluster of (B) based on the degrees measured in (C). For example, the mean degree per gray-colored node

belonging to the cluster denoted by the dashed line is 37
8
, which is the largest among those of the other clusters. We propose that this cluster

is lethal.
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Fig. 7. The gene transcription network of the yeast S. cerevisiae at pm. Red ( ), green ( ) and white ð�Þ nodes represent essential,

nonessential, and unknown genes, respectively (color online).
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of each cluster at pm, that is,

hkJ
i ¼

P
i2J kJ

i ðpsÞ

NJðpmÞ
, (2)

where kJ
i ðpsÞ is the degree of node i measured at ps and J is the cluster index to which node i belongs, which

was assigned at pm. NJðpmÞ is the number of nodes belonging to cluster J at pm. We then propose that the
cluster with the largest value of hkJ

i contains a high density of essential genes, which is based on the fact that
genes with a larger degree are more likely to be essential in the protein interaction networks [9].

To check this proposal, we directly measure essentiality EJ , which is defined as the fraction of known
essential genes to the total number of genes belonging to a given cluster J. Indeed, as shown in Fig. 6, the two
quantities, hkJ

i and EJ , behave in a similar manner. Thus, we can confirm that the cluster containing the
largest fraction of essential genes can be found in the in silico method through hkJ

i. With regard to the yeast
dataset, we identify the third largest cluster with 64 genes that proves to be the most essential cluster
containing 47 essential genes, 17 nonessential genes, and 1 unidentified gene (Fig. 7). Thus, the certainty of
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Fig. 8. Genes’ ratio specific to each functional category for the genes belonging to the first five largest clusters at pm (color online).
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selecting essential genes improves remarkably by as much as 73% or even higher when the unidentified gene is
excluded. This fraction is much larger than the one obtained only through the degree information in the gene
transcription networks that we studied in the previous section.

4. Functional modules

It is well known that the biochemical network is composed of a modular structure based on its functionality.
In the case of the yeast, 43 functional categories are known [10]. We identify 43 functional categories of genes
belonging to the first five largest clusters at pm, the ratio of which is shown in Fig. 8. This figure indicates that
each cluster at pm has a major population of genes with a specific functionality. For example, the majority of the
genes in the largest cluster belong to the functional class of amino acid metabolism. The genes in the second,
third and fourth largest cluster are from the class of small molecule transport, RNA processing/modification,
and protein synthesis, respectively. This functional clustering within the gene transcription network is rooted in
the genes of the same functional category that are likely to respond to an external perturbation in a similar
manner. As a result, the Pearson correlation coefficients between them are large, making clusters at a small pm

disconnect with each other. Our result is consistent with the recent discovery of modular structures in the yeast
protein interaction network [15] and in the metabolic networks [16]. Based on these properties, we may assign
functionally unknown genes as functional candidates based on the major functionality in an identical cluster.

5. Conclusions and discussion

We have introduced a new method to identify the cluster containing a high population of essential genes in
the transcription network by using the two known properties that genes with the same functionality are highly
correlated to the expression level of the microarray assay and that the essential genes are likely to have larger
degree than others in the scale-free network. The certainty of selecting essential genes is proved to be as high as
73%. Thus, such a selection method can be useful in resolving various knockout problems such as drug
designs. It should be noted that our method does not include any tuning parameter, and the selection can be
performed in a self-organized manner with less ambiguity compared with other existing methods.

This work is supported by the 21C Frontier Microbial Genomics and Application Center Program, MOST
(Grant MG05-0203-1-0) and the Korean Ministry of Sciences and Technology through M1 03B5000-00110.
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