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Abstract

Metabolic networks of many cellular organisms share global statistical features. Their connectivity distributions follow the long-tailed

power law and show the small-world property. In addition, their modular structures are organized in a hierarchical manner. Although

the global topological organization of metabolic networks is well understood, their local structural organization is still not clear.

Investigating local properties of metabolic networks is necessary to understand the nature of metabolism in living organisms. To identify

the local structural organization of metabolic networks, we analysed the subgraphs of metabolic networks of 43 organisms from three

domains of life. We first identified the network motifs of metabolic networks and identified the statistically significant subgraph patterns.

We then compared metabolic networks from different domains and found that they have similar local structures and that the local

structure of each metabolic network has its own taxonomical meaning. Organisms closer in taxonomy showed similar local structures. In

addition, the common substrates of 43 metabolic networks were not randomly distributed, but were more likely to be constituents of

cohesive subgraph patterns.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many chemical reactions occur within cells to produce
energy or to build various molecules. The sum of all these
chemical reactions within a living organism is referred to as
metabolism. Cellular metabolism involves a complex net-
work of metabolic substrates produced through enzyme-
catalysed biochemical reactions. It is important to under-
stand the topological structure of metabolic networks
(Barabási and Oltvai, 2004). A series of recent works has
provided a thorough understanding of the global and
large-scale organization of metabolic networks (Jeong et
al., 2000; Ravasz et al., 2002). These are scale-free networks
in which the degree of distribution follows a power-law
distribution PðkÞ�k�g where k is the number of reactions.
The network diameter, the average path length of a
network, of each organism is small and the same for all
e front matter r 2006 Elsevier Ltd. All rights reserved.
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organisms (Jeong et al., 2000), indicating that the average
number of reactions in which a certain substrate takes part
increases with the number of substrates found within a
given organism. The networks also have a hierarchical
organization of modularity, that is, they have modular
structures and the organization of modules is hierarchical
(Ravasz et al., 2002). However, the local structure of
metabolic networks is still not fully understood.
Subgraph patterns and network motifs have been

applied recently to understand the local structure of
complex networks (Milo et al., 2002, 2004; Vazquez et
al., 2004). Subgraph patterns consist of more than three
nodes and the links connecting only these nodes, which
represent the minimum subnetworks of complex networks.
Examples of triad subgraph patterns are shown in Fig. 1A.
Network motifs are the subgraph patterns that occur in a
complex network at numbers that are significantly higher
than those in a random network (Milo et al., 2002). These
are believed to represent the simplest building blocks of
complex networks and the topologically characteristic
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Fig. 1. (A) All possibilities of 13 types of three-node connected subgraphs. A number was assigned to each pattern. (B) Theoretical graphical

representation of a chemical reaction in the metabolic networks space. (C) The triad significance profiles (TSPs) of metabolic networks. (D) TSPs of three

different biological networks: metabolic networks of 43 organisms, C. elegans neural network, and yeast transcription network. (E) TSPs of six Archaea

(pink). AP, A. pernix; AG, A. fulgidus; TH, M. thermoautotrophicum; MJ, M. jannashii; PF, P. furiosus; PH, P. horikoshii. TSPs of five Eukaryotes (blue).

EN, E. nidulans; SC, S. cerevisiae; CE, C. elegans; OS, O. savita; AT, A. thaliana.
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interaction patterns within complex networks. Recently,
it was also shown that certain motifs have been en-
hanced through the evolution of a network, which supports
the functional importance of the motifs (Vazquez et al.,
2004). For example, in transcription networks, a bio-
chemical network responsible for regulating the expression
of genes in cells, the network motifs are thought to be
circuit elements that perform key information-
processing functions (Milo et al., 2002; Shen-Orr et al.,
2002; Mangan and Alon, 2003). The feed-forward loop,
one network motif of transcription networks, can act as a
circuit that reduces noise and responds only to a persistent
signal.
We analysed the local structure of metabolic networks of
43 organisms from three different domains of life. We
examined the triad subgraph patterns of metabolic net-
works of 43 organisms and identified their network motifs
involved in the metabolic networks of 43 different
organisms based on data deposited in the WIT database
(Overbeek et al., 2000), which is also available at http://
www.nd.edu/�networks/resources. These organisms cover
three domains of life including six Archaea, 32 Bacteria,
and five Eukaryotes. In the metabolic network, the nodes
of the network represent metabolic substrates and the links
represent the chemical reactions in which the substrates
participate (Fig. 1A). The direction of each link implies the

http://www.nd.edu/~networks/resources
http://www.nd.edu/~networks/resources
http://www.nd.edu/~networks/resources
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direction from an input substrate (educt) to an output
substrate (product) (Fig. 1B).

2. Network motifs and significance profile

We used the following algorithm to obtain the network
motifs (Milo et al., 2002). We scanned for all possible
three-node subgraphs in the network and recorded the
number of occurrences of each subgraph. To identify a
statistically significant subgraph pattern, we compared the
network to an ensemble of suitably randomized networks.
In our implementation, we used a Markov-chain algo-
rithm. Starting with the original network, we randomly
switched chosen pairs of links (S1! P1, S2! P2 is
replaced by S1! P2, S2! P1) repeatedly until the
network is well randomized. Switching is prohibited if the
either of the links S1! P2 or S2! P1 already exist. Each
node in the randomized networks contained the same
number of incoming and outgoing links as the correspond-
ing node in the original network. In addition, the
randomized networks that were used to estimate the
significance of n-node subgraphs were generated to
preserve the same number of appearances of all ðn� 1Þ-
node subgraphs as in the original network. For three nodes
case, to preserve the number of bidirectional links, we only
switched a bidirectional link for a different bidirectional
link (S12P1, S22P2 to S12P2, S22 P1), only if both
(S1 and P2) and (S2 and P1) are not connected by a link in
any direction. In case of the unidirectional link, we only
switched a unidirectional link for a different unidirectional
link (S1! P1, S2! P2 to S1! P2, S2! P1), only if
they do not generate new bidirectional links and the either
of the links S1! P2 or S2! P1 do not already exist. For
each subgraph i, the statistical significance of the subgraph
is described by the Z score

Zi ¼ ðN
real
i � hN

rand
i iÞ=stdðNrand

i Þ. (1)

Nreal
i is the number of appearances of the subgraph i in the

network, and hNrand
i i and stdðNrand

i Þ are the average and
standard deviation of its appearances in the ensemble of
randomized networks, respectively. The subgraph pattern
exhibiting a high Z score is the statistically significant
pattern. Here, the network motifs are those subgraph
patterns having a Z score greater than 2. We applied this
algorithm to detect network motifs from the metabolic
networks of 43 organisms and found that all metabolic
networks have their own network motifs. To provide a
more quantitative analysis, we investigated the local
structure of metabolic networks of each organism in detail
and identified the significance profile (SP) of each meta-
bolic network (Milo et al., 2004). The SP is the vector of Z

scores normalized to a unit length, of which the ith
component is given by

SPi ¼ Zi

X
j

Z2
j

 !1=2,
. (2)
The SP of a given network represents the relative significance
of the subgraphs in that network. It is important to compare
networks of different sizes because network motifs in large
networks tend to have higher Z scores than network motifs
in small networks (Milo et al., 2004).
The triad significance profile (TSP) for each metabolic

network is presented in Fig. 1C. The TSPs of these
networks are found to be almost insensitive to a removal of
20% of edges or to an addition of 20% new edges
randomly, representing that our results are robust to
possible missing or false-positive data errors. All metabolic
networks showed similar TSPs and three network motifs of
triads 5, 10, and 13 were found frequently. These motifs,
especially 5 and 10, are well-known feed-forward loop and
its variation of function is a prevalence of short detours in
metabolic network (Gleiss et al., 2001; Heinrich and
Schuster, 1996). In contrast, triads 2, 4, and 8 were
antimotifs that were significantly underrepresented. The
correlation coefficient between the TSPs of metabolic
networks in 43 organisms was about 0.78. The correlation
coefficient between a pair of vectors SPðuÞ and SPðvÞ

was defined as
PN

i¼1 ðSPðuÞi �muÞðSPðvÞi �mvÞ=ðjSP
ðuÞjjSPðvÞjÞ, where mu ¼

PN
i¼1 SPðuÞi=N is the average SP

of vector SPðuÞ over all N (here 13) types of subgraphs and

jSPðuÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðSPðuÞ �miÞ

2
q

is the norm of the centered

SPðuÞ. A high correlation coefficient implies high similar-
ity. Thus, the correlation of 0.78 shows that metabolic
networks have the same topological structure in both large-
scale organization (inhomogeneous power-law degree
distribution) and in local organization (sharing common
topological substructures).
To clarify whether these local structural properties apply

to metabolic networks only, we identified TSPs of other
biological networks, including the neural network of C.

elegans (Achacoso and Yamamoto, 1992) and the tran-
scription network of yeast (Fig. 1D), which is available at
http://www.weizmann.ac.il/mcb/UriAlon/Papers/network-
Motifs/. Interestingly, the TSPs of the tested network
differed from those of the metabolic network. In the
metabolic network, triads 5, 10, and 13 had high normal-
ized Z scores and triads 2, 4, and 8 had low normalized Z

scores. In contrast, in the yeast transcription network, only
triad 5 had a high normalized Z score and triads 1, 2, and 4
had low normalized Z scores. In the C. elegans neural
network, triads 5, 6, and 11 had high normalized Z scores
and triads 3, 4, and 7 had low normalized Z scores.
Although triads 5 (high Z score) and 4 (low Z score) share
a similar behavior, the overall profiles indicate that the
design principle of metabolic networks differs from that of
other biological networks.

3. Taxonomy based on local structure

Another interesting feature of the local organization of
metabolic networks is that the TSP of each metabolic
network has taxonomical meaning. Although the overall

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/
http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/
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TSPs of metabolic networks are similar, the TSPs of the
organisms belonging to same taxonomic group are closer.
For example, the correlation coefficient of TSPs from only
the metabolic network of the six Archaea species tested is
0.91 and that of the five Eukaryotes is 0.99, indicating that
metabolic networks in the same taxonomy group show
similar local characteristics (Fig. 1C). However, the
correlation coefficient from the TSPs of 32 Bacteria is
0.8, which is only slightly higher than the average value of
all 43 organisms (0.78). Bacteria can be divided into several
subgroups based on their evolutionary details (e.g. para-
sitic or non-parasitic bacteria) (Andersson and Andersson,
1999) (see Fig. 2). When these bacterial subgroups are
considered, the correlation coefficient between TSPs of
metabolic networks that belong to the same bacteria
subgroups becomes much higher. For example, the
correlation coefficient between TSPs of metabolic networks
for six g-proteobacteria is 0.92. Using TSP analysis, we also
showed that the taxonomical classification in Archae
corresponds highly with the metabolic network system.
Archaea can be classified into two phylum, Crenarchaeota
and Euryarchaeota. The TSP of Aeropyrum pernix, which
belongs to Crenarchaeota, differs somewhat from the TSPs
of the other five Archaea, which belong to the different
phylum, Euryarchaeota (Fig. 1E).

Fig. 2 shows the correlation coefficient matrix of TSPs
for all metabolic networks. These results clearly show that
1.0

0.8

0.6

0.4

0.2

Fig. 2. The correlation coefficient matrix of triad significan
the species-specific feature is reflected in the local
organization of metabolic networks. Recently, Milo et al.
suggested a method of dividing various complex networks
into ‘‘superfamilies’’ using the network TSPs (Milo et al.,
2004) and found several superfamilies of previously
unrelated networks with similar SP networks. For example,
one superfamily includes the protein signaling network,
developmental genetic network, and neural network. This
superfamily is a group of biological information-processing
networks. Although the details of the networks differ, the
design principles of networks are reflected in the local
structure of the networks. Our results represent biologically
meaningful ‘families’ of metabolic networks of 43 organ-
isms, or in this case, taxonomical groups.
From an evolutionary point of view, it is also interesting

that the system-level organization of archaeal and eukar-
yotic metabolic networks is closely related (Podani et al.,
2001). In local-level organization, Bacteria have four
subgroups, as illustrated in Fig. 2. Bacteria belonging to
subgroups 1, 2, and 4 are closely related to Crenarchaeota
(one phylum of Archaea), Euryarchaeota (another phylum
of Archaea), and Eukaryote, respectively. Bacteria belong-
ing to subgroup 3 are not closely related to Archaea or
Eukaryote. There are several ways to produce hierarchical
classification from the correlation matrix. One of the
most frequently used algorithms is the average-link
algorithm, a type of hierarchical algorithm. In the
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hierarchical algorithm, objects are connected by a tree
structure called the dendrogram (Fig. 3) in which objects in
the same subtree are closer to each other than objects in
different subtrees. In the average-link algorithm, the cluster
similarity of two clusters is the average pairwise similarity
between organisms in the two clusters (the correlation
between SPs in this case). Using the average-link algo-
rithm, we analysed the metabolic networks of 43 organisms
(Fig. 3) and identified the subgroups of bacteria and the
separation of Crenarchaeote, A. pernix from five Eur-
yarchaeotes. This separation was previously observed in
the system-level organization (Podani et al., 2001). We also
applied our method to the alternative bipartite network
where intermediate reactions are nodes, and found that still
taxonomical classification is still valid although details of
TSP are not the same.
Fig. 3. Hierarchical dendrogram based on the significance profiles of the

metabolic networks. Here we use the average-link algorithm. A, Archaea;

B, Bacteria; E, Eukaryotes.

Table 1

Relationship between cohesiveness of subgraph patterns and the probability t

Subgraph Number of subgraphs Natural conservation rate

1 2512 3.60

2 1375 2.84

3 9143 4.98

4 1452 2.75

5 130 6.15

6 35 28.57

7 7230 4.83

8 18 313 5.97

9 5 0.00

10 72 16.67

11 57 19.30

12 274 36.13

13 493 28.40

The natural conservation rate is the fraction of the original S. cerevisiae subgra

rate represents the fraction of subgraph patterns consisting of the random

conservation rate divided by random conservation rate.
4. Correlation between cohesive subgraph patterns and

common substrates

In the protein-interaction network of S. cerevisiae,
proteins organized in cohesive subgraph patterns are more
conserved than those not associated in such cohesive
patterns (Wuchty et al., 2003). Orthologs are not randomly
distributed through the protein-interaction network in
yeast, but are the constituents of cohesive subgraph
patterns. In other words, proteins that have evolutionary
importance make more cohesive subgraph patterns in the
protein-interaction network. And using conserved network
motif, protein-interaction prediction algorithm is suggested
(Albert and Albert, 2004). From a similar motivation, what
subgraph patterns are generated by common substrates in
the metabolic networks is an interesting question. We
investigated the correlation between the cohesiveness of
subgraph patterns and the probability that a given
subgraph pattern is composed of substrates common to
all 43 organisms. Cohesive patterns contain more internal
links than non-cohesive patterns. In directed patterns,
cohesive patterns also have more bidirectional links than
non-directed patterns. First, we selected 62 common
substrates of all 43 organisms to analyse, such as ATP,
ADP, water, and glycine, which are basic materials
required for survival. We then analysed the subgraph
patterns of these 62 common substrates only as they
appeared in a given metabolic network. For comparison,
we used 62 randomly selected substrates as controls and
identified the subgraph patterns for these randomly
selected substrates only.
The results for the three-node subgraph in metabolic

networks of S. cerevisiae are shown in Table 1. We
obtained similar results in the other 42 organisms. We
found remarkably different conservation rates for sub-
strates in the different subgraphs. The conservation rate for
a given subgraph pattern is defined as the number of
hat a given subgraph is composed of common substrates only

(%) Random conservation rate (%) Conservation ratio

0.16 23.23

0.14 20.05

0.15 33.77

0.13 21.12

0.13 45.71

0.12 238.1

0.13 36.44

0.14 42.51

0.20 0

0.12 137.93

0.13 144.74

0.15 242.65

0.15 195.26

ph that consists of the common substrates only. The random conservation

ly selected common substrates. The conservation ratio is the natural



ARTICLE IN PRESS
Y.-H. Eom et al. / Journal of Theoretical Biology 241 (2006) 823–829828
subgraphs of which all constituents come from only the
common substrates divided by the number of all sub-
graphs. As shown in Table 1, all three constituents of 3.6%
of triad 1 are the common substrates, whereas all three
constituents of 36.1% of triad 12 are made only with the
common substrates. We found a tendency for the subgraph
patterns with a loop structure and a double link (i.e. more
cohesive patterns) to have high conservation rates (e.g.
triads 6, 10, 11, 12, and 13).

These results indicate that the common substrates are
not distributed randomly in the metabolic network but are
the constituents of cohesive patterns. In other words,
substrates which are essential for survival are more likely to
generate cohesive subgraph patterns. To test the validity of
this finding, we made random sets of 62 common substrates
and calculated the conservation ratio, defined as the
Table 2

Statistics of each network

Network AP AG TH

Number of nodes 201 493 427

Number of links 911 2247 2022

Network motif 5; 12; 13 5; 10; 13 5; 6; 10;

Network AA CQ CT

Number of nodes 414 187 211

Number of links 1911 646 766

Network motif 10; 12; 13 12; 13 12; 13

Network ML MT BS

Number of nodes 417 580 772

Number of links 1904 2738 3809

Network motif 5; 10 5; 10; 13 5; 10; 12

Network MP PN ST

Number of nodes 171 404 390

Number of links 721 1962 1915

Network motif 5; 10 5; 10; 13 10; 13

Network NG NM CJ

Number of nodes 399 374 373

Number of links 1907 1798 1715

Network motif 10; 13 10; 13 10; 13

Network YP AB HI

Number of nodes 555 385 508

Number of links 2556 1711 2421

Network motif 5; 10; 13 5; 10; 13 5; 6; 10;

Network TM DR EN

Number of nodes 333 803 377

Number of links 1543 3889 1704

Network motif 10 5; 10; 13 5; 10

Network AT CE neural Yeast tr

Number of nodes 299 297 688

Number of links 1276 2345 1079

Network motif 5; 10 5; 6; 10; 11; 12; 13 5

AP, A. pernix; AG, A. fulgidus; TH, M. thermoautotrophicum; MJ, M. jannasch

CT, C. trachomatis; CY, Synechocystissp.; PG, P. gingivalis; MB, M. bovis; M

C. acetobutylicum; MG, M. genitalium; MP, M. pneumoniae; PN, S. pneumoniae;

N. gonorrhoeae; NM, N. meningitidis; CJ, C. jejuni; HP, H. pylori, EC, E.

H. influenzae; PA, P. aeruginosa; TP, T. pallidum; BB, B. burgdorferi; TM, T

C. elegans; OS, O. sativa; AT, A. thaliana.
natural conservation rate divided by the random conserva-
tion rate. All the subgraph patterns except triad 9 had a
conservation ratio higher than 20, indicating that the
network topology influences the natural placement of
common substrates in the metabolic network. In addition,
the cohesive subgraph patterns have a high conservation
ratio. We found similar results in the four-node case,
verifying that the common substrates are more likely to be
the constituents of cohesive patterns.

5. Conclusion

Through an intensive analysis of the local structure of
metabolic networks of 43 organisms, we identified network
motifs of the metabolic networks from three domains of
life: Archaea, Bacteria, and Eukaryotes (Table 2). The triad
MJ PF PH

421 312 320

1939 1384 1401

12; 13 5; 6; 10; 12; 13 5; 6; 10 5; 6; 10; 12

CY PG MB

539 415 421

2576 1835 1894

5; 10; 13 5; 10; 13 5; 10; 12; 13

EF CA MG

375 486 199

1862 2377 783

; 13 5; 10; 13; 13 5; 10; 13 5; 10; 12

CL RC RP

386 663 206

1773 3139 824

10; 13 5; 10; 12; 13 10; 12; 13

HP EC TY

369 765 806

1764 3904 4049

5; 10; 12; 13 5; 10; 12; 13 5; 10; 12; 13

PA TP BB

725 202 179

3511 864 696

12; 13 5; 10; 13 5; 6; 10 13

SC CE OS

551 452 288

2789 2159 1218

5; 10; 13 5; 10 5; 10; 13

anscription

ii; PF, P. furiosus; PH, P. horikoshii; AA, A. aeolicus; CQ, C. pneumoniae;

L, M. leprae; MT, M. tuberculosis; BS, B. subtilis; EF, E. faecalis; CA,

ST, S. pyogenes; CL, C. tepidum; RC, R. capsulatus; RP, R. prowazekii; NG,

coli; TY, S. typhi; YP, Y. pestis; AB, A. actinomycetemcomitans; HI,

. maritima; DR, D. radiodurans; EN, E. nidulans; SC, S. cerevisiae; CE,
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significance profiles of metabolic networks were used to
compare the local structure of metabolic networks. The
local organization of metabolic networks is similar to each
other, but is also species specific. These results indicate
that, despite significant variation in their individual
substrates and pathways, these metabolic networks have
the same topological properties in both the large scale and
local sense. Moreover, the local organization of metabolic
networks clearly shows characteristic features of each
individual metabolic network.

By investigating the correlations between common
substrates of 43 organisms and the cohesiveness of
subgraph pattern, we found that the common substrates
are not randomly distributed in the metabolic network but
are the constituents of cohesive patterns.
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