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Are better conductors more rigid?
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PACS. 82.35.Cd – Conducting polymers.
PACS. 72.80.Le – Polymers; organic compounds (including organic semiconductors).
PACS. 77.65.Bn – Piezoelectric and electrostrictive constants.

Abstract. – The variation of the bending stiffness of various materials is studied from the
point of view of the electronic band characteristics. As far as the electronically generated
bending stiffness κe (which we refer to as electro-stiffness) is concerned, the relevant factors are
the orbital overlap t, the gap width u between the valence band and the conduction band, and
the electron filling fraction γ. A perturbative calculation leads to the approximate expression
κe ∼ t2/

√
u2 + t2. This shows that materials with a large overlap and narrow band gap

should be stiffer. The electro-stiffness also depends on the electron filling-fraction. We find
that κe(γ) ≤ κe(1/2). These kinds of behavior are confirmed by numerical calculations. In
addition, we study the variation in the projected length of flexible molecules under a voltage
bias. The nonlinear variation of the bending rigidity is shown to give rise to a length contraction
or dilation, depending on the voltage bias.

The elastic modulus which characterizes the stiffness of materials shows a broad spectrum
ranging from a few kBT to several eV. The structural stiffness of a material is determined by
many factors, such as atomic binding energies, the nature of molecular bonding, inter-polymer
adhesion, to mention a few. It seems plausible that inherent electronic properties could be
an additional source for mechanical rigidity. If a material is a good conductor, structural
deformations which lead to a loss in the electronic orbital overlaps are less favored. Such an
effect would be weak for poorly conducting materials. This appears to be true in the case
of a polymer like rubber which is a bad conductor and very flexible, while a metal is a good
conductor with high rigidity. In fact, there exist materials which are both good conductors
and flexible, called conducting polymers. They have π-orbital overlapping along a conjugated
backbone and a gap between the highest filled and the lowest unfilled bands, forming a band
structure similar to inorganic semiconductors. When an electron is removed or added, the
conductivity is greatly enhanced, allowing these semiconductors to be utilized as organic
electronic devices. On the other hand, conducting polymers are much more flexible than
semiconducting solids. This property has led to many studies for exploring their mechanical
deformations, such as bending and expansion/contraction driven by electric triggering.
It seems that the key cause for the mechanical stiffness is material dependent. In the

exploration of its possible origins, it is desirable to relate the electronic properties of these
materials with their mechanical stiffness. This is essential not only to evaluate the electronic
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contribution to stiffness in relation with the chemistry-based factors, but also to grasp the
variation of the mechanical response to an electric signal in various materials. For instance,
the extension ratio of Polyalkylthiophene (PAT) is larger than that of Polypyrrole (PPy) [1].
It is interesting to relate this to the difference in their electronic band structures. Although
they have comparable orbital overlap, the gap between HOMO (Highest Occupied Molecular
Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) levels in PAT is about half of
that in PPy [2]. This indicates that not only orbital overlap but also band gap comes into
play in mechanical stiffness.
The purpose of this work is to give a quantitative estimate of the electronic contribution

to the total conformational stiffness. To this aim, we consider a conducting polymer mod-
elled as a one-dimensional chain composed of N -monomers where inter-monomer hopping of
electrons is allowed via π-orbital stacking. Assuming that hopping strength to depend on the
angular configuration of monomers [3], we focus more specifically on the bending stiffness.
Furthermore, to simulate the HOMO-LUMO gap, an alternating on-site potential is included
in the Hamiltonian. Following a semi-classical approach, we trace over the electronic degree
of freedom and obtain the effective potential for the angle deformations. We find that the
bending stiffness associated with electronic properties, which we refer to as electro-stiffness,
κe, is governed by the molecular orbital, t and gap width between HOMO and LUMO level,
u, and scales as κe ∼ t2/

√
u2 + t2. Further by analyzing the electron-filling fraction depen-

dence on κe, we show that doping would make the molecules more flexible. To evaluate the
specific contribution of κe to the total bending rigidity, we consider molecules of constant
contour length under a voltage bias and examine the variation of the projected length as a
function of the bias. It turns out that the applied voltage alters the electro-stiffness, yielding
the contraction (dilation) in the projected length of the molecules.
We consider a conducting molecule in the presence of an external electric field. The

Hamiltonian for the electrons responsible for the conducting behavior is taken as

He = −
∑

n

tn,n+1(c†ncn+1 +H.c.) +
∑

n

[(−1)nu− εxn]c†ncn. (1)

Here the inter-site hopping integral tn,n+1 is determined by the degree of π-orbital overlap,
and is maximum when the molecule is in a straight form. When the molecule is not in the
straight conformation, the overlap is decreased, which tends to suppress electron hopping. We
incorporate this fact by introducing an angle dependence in the hopping integral as tn,n+1 =
t cos(φn+1 − φn) ≡ t cos θn. For θn = 0, the hopping parameter is spatially uniform and
maximized by parallel orbital arrangement. In the second term we introduce an alternating
on-site potential, yielding a gap whose width is determined by u. This enables us to investigate
semiconducting molecules having a gap between HOMO and LUMO level. Also, the on-site
potential is position dependent due to the applied voltage V and ε = |e|V a/L is the voltage
drop across one monomer with electrode spacing L (see fig. 1) with taking the bead spacing as
a. Especially, we consider that one end of the polymer is anchored to the grounded electrode,
where a nonconductive contact is assumed not to allow current flow between the polymer and
the electrodes. The position of monomers (in units of a) coupled to the electric fields, can be
written as xn =

∑n
i=0 cosφi − (1/2) cosφn with the lower index n for the monomer located

closer to the grounded electrode. On the other hand, to examine the changes of the projected
length in response to the applied fields, the other end is assumed to be detached from the
gated electrode.
The Hamiltonian contains several electronic factors that contribute to the structural rigid-

ity: i) the electron hopping favored by a straight configuration; ii) the band gap making the
molecules less conducting and tending to diminish the effect of the factor i); iii) the applied
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Fig. 1 – Schematic picture of a conducting polymer between two electrodes. The one with the anchored
polymer is grounded and the other is fixed at voltage V . The polymer configurations are discretized
in a way such that monomers are located at the mean positions of two adjacent beads. Here the local
tangent to the polymer at monomer n is defined by the bead-to-bead bond angle 0 ≤ φn ≤ π/2.

voltage bias inducing length contraction or extension. In fact, the rigidity also has contribu-
tions from molecular bonding and atomic binding potentials, which we denote as κm, and the
potential governing the structural rigidity is written as

Hm =
∑

n

κnθ
2
n,

where κn = κe,n + κm and the rigidity from electronic origin, κe,n, can be obtained by

κe,n = −kBT

2
∂2

∂θ2
n

lnTr{c,c†} exp[−βHe], (2)

which can be site dependent when boundary effects are considered.
Before proceeding, we first compare how the electronic degrees of freedom are coupled

to the lattice motion in our model and in other approaches. For instance, the Su-Schrieffer-
Heeger (SSH) model [4] considers π-electron subject to ionic displacement via the tight-binding
Hamiltonian given by

HSSH =
∑

n

tn,n+1(c†ncn+1 +H.c.),

where the hopping parameter is taken as tn,n+1 = t − α(ξn+1 − ξn) with ξn being the dis-
placement of the n-th ion from its reference position na. By making an Ansatz as ξn =
(−1)nξ − (N/2− n)δ with ξ and δ for the dimerization and bond length variance, the energy
for HSSH together with the lattice Hamiltonian can be calculated and minimized with respect
to ξ and δ. In the SSH model there are two competing energetic factors: The electronic en-
ergy is lowered and the elastic energy is increased by the dimerization. This kind of Ansatz
is appropriate in order to study the appearance of a bond-length alternation in the ground
state. In our model however, the bending is neither favored electronically nor mechanically,
and hence no competing effect leads to the spontaneous deformation of the lattice. Even if
we used the SSH model in our approach, the main concern would still be to figure out an ad-
ditional potential for the lattice deformation provided by the lattice-electron coupling, rather
than the deformation itself.
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Let us first consider the small bending of the molecules in the absence of a voltage drop.
Expanding the angle to quadratic order, we define

H(0)
e = −t

∑

n

(c†ncn+1 +H.c.) + u
∑

n

(−1)nc†ncn, (3)

H(1)
e =

t

2

∑

n

θ2
n(c

†
ncn+1 +H.c.),

where the position of the n-th monomer for small φ’s is denoted by xn. Assuming H(1)
e to be a

small perturbation, we can write−kBT ln〈e−βH(1)
e 〉0 ≈ 〈H(1)

e 〉0, where 〈X〉0 = Z−1
0 TrXe−βH(0)

e

with Z0 = Tre−βH(0)
e . It is convenient to work in the Fourier space: cn = N−1/2

∑
n e

iknck.
The Hamiltonian H(0)

e can then be straightforwardly diagonalized by the canonical transfor-
mation ck = cosχkak,+ + sinχkak,− and ck+π = − sinχkak,+ + cosχkak,− as

H(0)
e =

∑

k,α=±
λ(k)a†k,αak,α,

where λ(k, α) = α
√
ε2(k) + u2 with ε(k) = −2t cos k and tan 2χk = −u/ε(k) and α = ±1.

Similarly we can write H(1)
e in terms of the diagonalizing basis, with off-diagonal components.

In evaluating 〈H(1)
e 〉0, however, since H(0)

el is quadratic in the c’s, the only non-vanishing
contributions can be easily traced and we get

κe =
1
N

∑

k,α=±1

−ε2(k)
α
√
u2 + ε2(k)

〈Nk,α〉0 (4)

with the mean number of particles occupying the α = +1 and −1 bands being determined by
〈Nk,α〉0 = 〈a†k,αak,α〉0 = [eβ(λ(k,α)−µ) + 1]−1. (5)

Let us first consider when the system is half-filled so that 〈Nk,+〉 = 0. From eq. (4),
it is clear that as far as the electronic contribution to the bending stiffness is concerned,
the hopping integral plays a dominant role: while the denominator in eq. (4) characterizes
the band width, the numerator is proportional to t2. On the other hand, for molecules
having comparable hopping strengths, those with large band gap would be more flexible. The
numerical evaluation of eq. (2) has been performed and the resulting stiffness is presented
in fig. 2. It is in good agreement with the perturbative result, eq. (4). While the analytic
expression for the stiffness can be easily obtained for an infinitely long polymer, a finite-sized
polymer has boundary effects that are characterized by a site-dependent stiffness. As shown
in fig. 2, the stiffness is weaker in the polymer bulk than in the ends, indicating that when a
force is applied, the bending of the polymer would be more localized in the bulk rather than
being uniform all over.
Even more interesting is the filling factor dependence of κe. When hole/particles are

introduced in the system by doping, the electrostiffness becomes weaker than that for a half-
filled system, as displayed in fig. 3. We evaluated the stiffness difference ∆κe ≡ κe(γ)−κe(1/2),
where γ denotes the filling fraction as γ = Ne/N . When the system is half-filled, α = (+1)
band would be empty so that in eq. (4), the contribution to the stiffness is solely due to the
α = (−1) band. On the other hand, when holes are doped, the α = (−1) band becomes
partially filled, and the corresponding reduction in 〈Nk,−〉 results in a decrease of κe. Here
we have assumed that doping makes no changes in the orbital overlap. Since the doping effect
is to enhance the electric conductivity, it can be assumed that a doped system has a larger
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Fig. 2 – The electro-stiffness κe vs. the hopping integral for N = 40 in the absence of a voltage bias.
The values of κe depend on the monomer position, those near the boundaries, e.g. n = 1 being smaller
than those at n = 20. For a given n, κe is estimated for u = 20 and u = 60 to show that an increase in
the gap width suppresses the stiffness. The energy parameters are in units of eV throughout this paper.

orbital overlap than a non-doped one. In that case, doping leads to two competing effects:
increasing κe by enhancing t and decreasing κe by reducing γ. In order to discriminate which
of the two is the dominant factor, some experimental measurements on bending as a function
of doping should be performed, and our results could be used as a benchmark.
The electrostiffness depends also on the applied electric field which contributes to the

energy of the system via a coupling to the charges of the electrons: when ε  t and u, we may
approximate the energy due to the field as Ef = −ε∑

n xn〈c†ncn〉. When a positive voltage
bias is applied, the molecule increases its length, and hence the effective stiffness increases.
For a negative voltage bias, the molecule tends to contract, resulting in the reduction of its
stiffness. Investigating the length deformation as a function of the electric field is thus very
useful to evaluate the contribution of κe to the total rigidity κ. As we mentioned earlier,

Fig. 3 – The stiffness difference ∆κe vs. the electron filling fraction γ for N = 40 in the absence of
a voltage bias: for a given n, κe is estimated for t = 60, u = 40 (PPy) and t = 48, u = 20 (PAT) to
show that the increase of the gap width suppresses the stiffness. For a DNA molecule, the parameters
t = 8 and u = 40 are used to show that κe barely changes with the filling fraction.
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Fig. 4 – The derivative of the length contraction ratio λ vs. the voltage drop ε for various parameter
sets. Here, the parameters for PPy and PAT are the same as the ones used in fig. 3, and σ represents
the ratio σ = κm/κe.

the structural rigidity comes not only from those electronic degrees of freedom but also from
the molecular binding potentials. Since for the latter, the deformation is presumably rather
insensitive to the applied electric potential, the length deformation caused by the electric field
would directly relate the contribution of κe to the total rigidity. To see this more clearly, let
us define the length contraction (extension) ratio λ as

1
λ
≡ 1− Lp

Lc
≈ 1
2
〈φ2〉 (6)

with Lc and Lp being the contour length and the projected length of the polymer, re-
spectively, and 〈φ2〉 being the average angle fluctuation per monomer, given by 〈φ2〉 =
Tr{φ}e−βHm

∑
i φ

2
i /Tr{φ}e−βHm . Here, let us disregard the site dependence in κe,n (which

as we saw is uniform, except for a few boundary sites), and write Hm =
∑

〈i,j〉 κ(φi − φj)2,
where κ = κm + κe and κm is the bending rigidity due to molecular bonding. It is clear that
〈φ2〉 ∝ 1/κ and hence, ∂λ/∂ε, which is measurable in experiments, would be simply related to
the electric-field dependence of κe. Evaluating λ as a function of the voltage bias for molecules
having different κm, e.g., σ ≡ κm/κe(σ = 2, 5), we confirm in fig. 4 that ∂λ/∂ε is indeed not
very sensitive to κm. It is also shown that the length contraction ratio increases nonlinearly
with ε and its derivative with respect to ε is positive. This clearly demonstrates the expected
feature that the molecules adjust their length to the voltage, allowing for their use as electro-
mechanical switches. For experimental investigation on the length variation, to suspend a
single molecule would be a highly demanding task. Yet, experiments would be possible with
a layer of polymer chains. It is known that due to the excluded-volume effect polymer chains
grafted onto solid substrate form a brush-like layer, the so-called polymer brush [5]. Our
results on a single molecule might not be directly comparable to the case of polymer brush.
Nonetheless, when the grafting density is low, it is expected that a single-particle feature
would be dominant over the collective properties arising from the steric interaction between
polymers, for which our theory can provide a lucid explanation.
In summary, the electronic origin of bending stiffness was investigated. It was shown that

the electro-stiffness, κe, is governed by the molecular orbital overlap and the gap width be-
tween HOMO and LUMO levels: molecules with wider band width are more flexible. The
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electro-stiffness can be controlled by molecular doping or by applying a voltage bias. Ana-
lyzing the electron filling-fraction dependence on κe, we showed that doping makes molecules
more flexible. In addition, we considered molecules under a voltage bias to extract the κe con-
tribution to the total stiffness. In response to the applied voltage, the molecules are contracted
or dilated with a very nonlinear increase of κe with the applied bias.
To conclude this study, we mention the value of κe for a few molecules. For example,

DNA has an extremely narrow band width (≈ 0.01 ∼ 0.04 eV) [6] and its electrostiffness is
estimated here to be roughly just a few kBT . It is well known that the persistence length
of ssDNA is about !p ∼ 5 nm [7], which is related to the bending energy by κ = (!p/a)kBT .
Taking the inter-base distance a = 3.4 Å, κ ≈ 14kBT , showing that the contribution of κe

to the stiffness is significant. For a dsDNA !p ≈ 50 nm and hence κ is ten times bigger than
that for ssDNA [7], while the doubling of κe cannot account for the difference. This suggests
that among the energetic factors which govern dsDNA bending, the electronic motions via
orbital overlap is not as crucial as the electrostatic repulsion between phosphate groups and
the helical structured base staking [8]. On the other hand, the persistence length of carbon
nanotubes (CNT) lies in the macroscopic range !p = 0.1–1µm [9], which shows that the
bending rigidity of CNT is hundreds times larger than that of dsDNA. Noting that the orbital
overlap is t ∼ 2.5 eV, and the band gap is small, u = 0 ∼ 0.5 eV [10], we find κe ≈ 102kBT ,
which shows the important contribution of electro-stiffness to the total stiffness of CNT. In
addition, the HOMO and LUMO level of PPy and PAT can be simulated by taking u = 1 eV
and t = 1.5 eV, and u = 0.5 eV and t = 1.2 eV, respectively [2]. This leads to κe ≈ 34kBT for
PPy, and κe ≈ 28kBT for PAT. Although no direct measurement of the bending rigidity of
these materials has been made, this goes in the direction of showing that the latter is more
responsive than the former [1].
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